Menu Close

let-f-x-x-1-x-2-x-4-1-find-f-n-x-2-calculate-f-n-0-3-developp-f-at-integr-serie-




Question Number 37282 by abdo.msup.com last updated on 11/Jun/18
let f(x)=(x/(1+x^2  +x^4 ))  1) find f^((n)) (x)  2)calculate f^((n)) (0)  3)developp f at integr serie.
letf(x)=x1+x2+x41)findf(n)(x)2)calculatef(n)(0)3)developpfatintegrserie.
Commented by abdo.msup.com last updated on 17/Jun/18
f^((n)) (0)=(((−1)^n n!)/( (√3)))((−1)^n −1))sin((n+1)(π/3)
f(n)(0)=(1)nn!3((1)n1))sin((n+1)π3
Commented by abdo.msup.com last updated on 17/Jun/18
⇒f^((2n)) (0)=0 and   f^((2n+1)) (0)= ((2(2n+1)!)/( (√3)))sin{(2n+2)(π/3)}  3)f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞  ((f^((2n+1)) (0))/((2n+1)!)) x^(2n+1)   =Σ_(n=0) ^∞    (2/( (√3)))sin{(2n+2)(π/3)}x^(2n+1)  .
f(2n)(0)=0andf(2n+1)(0)=2(2n+1)!3sin{(2n+2)π3}3)f(x)=n=0f(n)(0)n!xn=n=0f(2n+1)(0)(2n+1)!x2n+1=n=023sin{(2n+2)π3}x2n+1.
Commented by prof Abdo imad last updated on 17/Jun/18
1) poles of f?  1+x^2  +x^4  =0 ⇒z^2  +z +1=0(z=x^2 ) ⇒  z=j or z=j^−   x^2 =e^(i((2π)/3))  ⇒x =+^−   e^((iπ)/3)   x^2  =e^(−((i2π)/3))  ⇒ x=+^−  e^(−((iπ)/3))   so  f(x)= (x/((x−e^((iπ)/3) )(x+e^((iπ)/3) )(x−e^(−((iπ)/3)) )(x+e^(−((iπ)/3)) )))  = (a/(x−e^((iπ)/3) )) +(b/(x+e^((iπ)/3) ))  +(c/(x−e^(−((iπ)/3)) )) +(d/(x+e^(−((iπ)/3)) ))  but f(z_k )= (z_k /(4z_k ^3  +2z_k )) =(1/(4z_k ^2  +2))  a = (1/(4e^((2iπ)/3)  +2)) = (1/(4(−(1/2)+i((√3)/2)) +2)) = (1/(2i(√3)))  b = (1/(4e^((2iπ)/3)  +2)) =(1/(2i(√3)))  c = (1/(4 e^(−((2iπ)/(3 )))  +2)) =(1/(4(−(1/2)−i((√3)/2))+2)) =−(1/(2i(√3)))  d = −(1/(2i(√3))) ⇒  f(x)=(1/(2i(√3))){  (1/(x−e^((iπ)/3) ))  +(1/(x +e^((iπ)/3) ))  −(1/(x−e^(−((iπ)/3)) )) −(1/(x +e^(−((iπ)/3)) ))}  f^((n)) (x)=(((−1)^n n!)/(2i(√3))){  (1/((x−e^((iπ)/3) )^(n+1) )) +(1/((x+e^((iπ)/3) )^(n+1) ))  −(1/((x−e^(−((iπ)/3)) )^(n+1) ))  − (1/((x +e^(−((iπ)/3)) )^(n+1) ))  }
1)polesoff?1+x2+x4=0z2+z+1=0(z=x2)z=jorz=jx2=ei2π3x=+eiπ3x2=ei2π3x=+eiπ3sof(x)=x(xeiπ3)(x+eiπ3)(xeiπ3)(x+eiπ3)=axeiπ3+bx+eiπ3+cxeiπ3+dx+eiπ3butf(zk)=zk4zk3+2zk=14zk2+2a=14e2iπ3+2=14(12+i32)+2=12i3b=14e2iπ3+2=12i3c=14e2iπ3+2=14(12i32)+2=12i3d=12i3f(x)=12i3{1xeiπ3+1x+eiπ31xeiπ31x+eiπ3}f(n)(x)=(1)nn!2i3{1(xeiπ3)n+1+1(x+eiπ3)n+11(xeiπ3)n+11(x+eiπ3)n+1}
Commented by prof Abdo imad last updated on 17/Jun/18
2)f^((n)) (0)= (((−1)^n n!)/(2i(√3))){   (((−1)^(n+1) )/e^((i(n+1)π)/3) )  +(1/e^((i(n+1)π)/3) )  −(((−1)^(n+1) )/e^(−((i(n+1)π)/3)) )  −(1/e^(−((i(n+1)π)/3)) )}  = (((−1)^n n!)/(2i(√3))){ (−1)^(n+1)  e^(−((i(n+1)π)/3))  +e^(−((i(n+1)π)/3))   −(−1)^(n+1) e^((i(n+1)π)/3)  − e^((i(n+1)π)/3) }  =(((−1)^n n!)/(2i(√3))){ (−1)^n 2isin((n+1)(π/3)) −2isin(n+1)(π/3)}
2)f(n)(0)=(1)nn!2i3{(1)n+1ei(n+1)π3+1ei(n+1)π3(1)n+1ei(n+1)π31ei(n+1)π3}=(1)nn!2i3{(1)n+1ei(n+1)π3+ei(n+1)π3(1)n+1ei(n+1)π3ei(n+1)π3}=(1)nn!2i3{(1)n2isin((n+1)π3)2isin(n+1)π3}
Commented by prof Abdo imad last updated on 17/Jun/18
λ_k =  (z_k /(p^′ (z_k ))) with  p(x)= 1+x^2  +x^4 ⇒  λ_k = (z_k /(4z_k ^3  +2z_k ))   so change f(z_k ) by λ_k
λk=zkp(zk)withp(x)=1+x2+x4λk=zk4zk3+2zksochangef(zk)byλk

Leave a Reply

Your email address will not be published. Required fields are marked *