Question Number 47851 by maxmathsup by imad last updated on 15/Nov/18
$${let}\:\:{f}\left({x}\right)={x}+\mathrm{1}+\sqrt{{x}}\:{and}\:{g}\left({x}\right)={x}+\mathrm{1}−\sqrt{{x}} \\ $$$${find}\:\int\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}{dx}\:\:{and}\:\:\frac{\int{f}\left({x}\right){dx}}{\int{g}\left({x}\right){dx}}\:. \\ $$
Commented by maxmathsup by imad last updated on 16/Nov/18
$${let}\:{I}\:=\int\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}{dx}\:\Rightarrow{I}\:=\int\frac{{x}+\mathrm{1}+\sqrt{{x}}}{{x}+\mathrm{1}−\sqrt{{x}}}{dx}\:{cha}\mathrm{7}{gement}\:\sqrt{{x}}={t}\:{give} \\ $$$${I}\:=\int\:\frac{{t}^{\mathrm{2}} +{t}+\mathrm{1}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}\:\left(\mathrm{2}{t}\right){dt}\:=\mathrm{2}\:\int\:\:\:\:\frac{{t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} \:−{t}\:+\mathrm{1}}{dt} \\ $$$$=\mathrm{2}\:\int\:\frac{{t}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)+{t}^{\mathrm{2}} −{t}+{t}^{\mathrm{2}} \:+\mathrm{1}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}{dt}\:=\mathrm{2}\:\int\:{t}\:{dt}\:+\mathrm{2}\:\int\:\frac{\mathrm{2}{t}^{\mathrm{2}} −{t}+\mathrm{1}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}{dt} \\ $$$$={t}^{\mathrm{2}} \:+\mathrm{2}\:\int\:\:\frac{\mathrm{2}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)+\mathrm{2}{t}−\mathrm{2}−{t}+\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt} \\ $$$$={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:\:+\:\int\:\frac{\mathrm{2}{t}−\mathrm{1}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}{dt}\:={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:+{ln}\mid{t}^{\mathrm{2}} −{t}+\mathrm{1}\mid−\int\:\frac{{dt}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}\:{but} \\ $$$$\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −{t}\:+\mathrm{1}}\:=\int\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{2}\frac{{t}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}\:}\:+\frac{\mathrm{3}}{\mathrm{4}}}\:=\int\:\:\frac{{dt}}{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=_{{t}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}\:} \:\:\:\frac{\mathrm{4}}{\mathrm{3}}\:\int\:\:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{du}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:\Rightarrow \\ $$$${I}\:={t}^{\mathrm{2}} \:+\mathrm{4}{t}\:−\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{\mathrm{2}{t}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)+{C}\:. \\ $$
Commented by maxmathsup by imad last updated on 16/Nov/18
$${but}\:{t}=\sqrt{{x}}\:\Rightarrow\:{I}\:={x}\:+\mathrm{4}\sqrt{{x}}\:−\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\:{arctan}\left(\frac{\mathrm{2}\sqrt{{x}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:+{C}\:. \\ $$
Commented by maxmathsup by imad last updated on 18/Nov/18
$${changement}\:\sqrt{{x}}={t}\:{give}\:\int\:{f}\left({x}\right){dx}=\int\:\left({t}^{\mathrm{2}} \:+\mathrm{1}+{t}\right)\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int\:\left({t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:+{t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}{t}^{\mathrm{4}} \:+\frac{\mathrm{2}}{\mathrm{3}}{t}^{\mathrm{3}} \:\:+{t}^{\mathrm{2}} \:+{c}_{\mathrm{1}} =\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{\mathrm{2}}{\mathrm{3}}{x}\sqrt{{x}}+{x}\:+{c}_{\mathrm{1}} \\ $$$$\int\:{g}\left({x}\right){dx}\:=\int\:\left({x}+\mathrm{1}−\sqrt{{x}}\right){dx}\:=_{\sqrt{{x}}={t}} \:\:\:\int\:\left({t}^{\mathrm{2}} \:+\mathrm{1}−{t}\right)\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int\:\:\left({t}^{\mathrm{3}} \:+{t}\:−{t}^{\mathrm{2}} \right){dt}\:=\frac{{t}^{\mathrm{4}} }{\mathrm{4}}\:−\frac{\mathrm{2}}{\mathrm{3}}{t}^{\mathrm{3}} \:+{t}^{\mathrm{2}} \:+{c}_{\mathrm{2}} =\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:−\frac{\mathrm{2}}{\mathrm{3}}{x}\sqrt{{x}}+{x}\:+{c}_{\mathrm{2}} \\ $$$$\Rightarrow\:\frac{\int{f}\left({x}\right){dx}}{\int{g}\left({x}\right){dx}}\:=\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+\frac{\mathrm{2}}{\mathrm{3}}{x}\sqrt{{x}}+{x}\:+{c}_{\mathrm{1}} }{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{2}}{\mathrm{3}}{x}\sqrt{{x}}+{x}\:+{c}_{\mathrm{2}} }\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18
$$\int{f}\left({x}\right){dx} \\ $$$$\int{x}+\mathrm{1}+\sqrt{{x}}\:{dx} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}+\frac{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{1}} \\ $$$$\int{g}\left({x}\right){dx}=\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}−\frac{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{2}} \\ $$$${so}\:\frac{\int{f}\left({x}\right){dx}}{\int{g}\left({x}\right){dx}}=\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}+\frac{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{1}} }{\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{x}−\frac{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{\frac{\mathrm{3}}{\mathrm{2}}}+{c}_{\mathrm{2}} } \\ $$$$ \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18
$$\int\frac{{x}+\mathrm{1}+\sqrt{{x}}\:}{{x}+\mathrm{1}−\sqrt{{x}}\:}{dx} \\ $$$$\int\frac{\sqrt{{x}}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}+\mathrm{1}}{\:\sqrt{{x}}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}}−\mathrm{1}}{dx} \\ $$$$\int\frac{\sqrt{{x}}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}\:}−\mathrm{1}+\mathrm{2}}{\:\sqrt{{x}}\:+\frac{\mathrm{1}}{\:\sqrt{{x}}\:}−\mathrm{1}}{dx} \\ $$$$\int{dx}+\mathrm{2}\int\frac{{dx}}{\:\sqrt{{x}}+\frac{\mathrm{1}}{\:\sqrt{{x}}}−\mathrm{1}} \\ $$$${t}^{\mathrm{2}} ={x}\:\:\:{dx}=\mathrm{2}{tdt} \\ $$$${I}_{\mathrm{1}} =\int{dx}={x}+{c}_{\mathrm{1}} \\ $$$${I}_{\mathrm{2}} =\int\frac{\mathrm{2}{tdt}}{{t}+\frac{\mathrm{1}}{{t}}−\mathrm{1}}{dt} \\ $$$$\int\frac{\mathrm{2}{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}−{t}}{dt} \\ $$$$\mathrm{2}\int\frac{{t}^{\mathrm{2}} −{t}+\mathrm{1}+{t}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{2}\int{dt}+\mathrm{2}\int\frac{{t}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{2}\int{dt}+\int\frac{\mathrm{2}{t}−\mathrm{1}−\mathrm{1}}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}{dt} \\ $$$$\mathrm{2}\int{dt}+\int\frac{{d}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}−\int\frac{{dt}}{\left({t}^{\mathrm{2}} −\mathrm{2}.{t}.\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}\right)} \\ $$$$\mathrm{2}\int{dt}+\int\frac{{d}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)}{{t}^{\mathrm{2}} −{t}+\mathrm{1}}−\int\frac{{dt}}{\left({t}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\mathrm{2}{t}−{ln}\left({t}^{\mathrm{2}} −{t}+\mathrm{1}\right)−\frac{\mathrm{2}}{\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}}{tan}^{−\mathrm{1}} \left(\frac{{t}−\frac{\mathrm{1}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}}\right)+{c} \\ $$$$\mathrm{2}\sqrt{{x}}\:−{ln}\left({x}−\sqrt{{x}}\:+\mathrm{1}\right)−\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}\:}{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{x}}\:−\frac{\mathrm{1}}{\mathrm{2}}}{\frac{\sqrt{\mathrm{3}}\:}{\mathrm{2}}}\right)+{c} \\ $$