Menu Close

let-f-x-x-1-x-n-x-1-x-n-with-n-integr-natural-and-x-from-R-x-0-1-simplify-f-x-2-calculate-lim-x-f-x-3-calculate-1-3-f-x-dx-




Question Number 46421 by maxmathsup by imad last updated on 25/Oct/18
let f(x)=(x+(1/x))^n −(x−(1/x))^n  with n integr natural and x from R (x≠0)  1) simplify f(x)  2) calculate lim_(x→+∞) f(x)  3) calculate  ∫_1 ^3  f(x)dx
letf(x)=(x+1x)n(x1x)nwithnintegrnaturalandxfromR(x0)1)simplifyf(x)2)calculatelimx+f(x)3)calculate13f(x)dx
Commented by maxmathsup by imad last updated on 27/Oct/18
1) the binome formulae give f(x)=Σ_(k=0) ^n  C_n ^k  x^k  (1/x^(n−k) ) −Σ_(k=0) ^n  C_n ^k  x^k  (((−1)^(n−k) )/x^(n−k) )  = Σ_(k=0) ^n  C_n ^k   x^(2k−n)  −Σ_(k.=0) ^n  C_n ^k  (−1)^(n−k)  x^(2k−n)   =Σ_(k=0) ^n  C_n ^k (1−(−1)^(n−k) )x^(2k−n)  =Σ_(k=0) ^n (1−(−1)^(n−k) )C_n ^k  x^(2k−n)   =_(n−k =p)    Σ_(p=0) ^n  (1−(−1)^p ) C_n ^(n−p)   x^(2(n−p)−n)   =Σ_(p=0) ^n  (1−(−1)^p ) C_n ^p   x^(n−2p)   =Σ_(k=0) ^([((n−1)/2)])  2 C_n ^(2k+1)   x^(n−2(2k+1))   = 2 Σ_(k=0) ^([((n−1)/2)])  C_n ^(2k+1)   x^(n−4k−2)  .
1)thebinomeformulaegivef(x)=k=0nCnkxk1xnkk=0nCnkxk(1)nkxnk=k=0nCnkx2knk.=0nCnk(1)nkx2kn=k=0nCnk(1(1)nk)x2kn=k=0n(1(1)nk)Cnkx2kn=nk=pp=0n(1(1)p)Cnnpx2(np)n=p=0n(1(1)p)Cnpxn2p=k=0[n12]2Cn2k+1xn2(2k+1)=2k=0[n12]Cn2k+1xn4k2.
Commented by maxmathsup by imad last updated on 27/Oct/18
2) we have f(x)=x^n { (1+(1/x^2 ))^n  −(1−(1/x^2 ))^n } but   (1+(1/x^2 ))^n   ∼ 1+(n/x^2 )  and (1−(1/x^2 ))^n ∼ 1−(n/x^2 ) (x→∞) ⇒  f(x) ∼ x^n  { ((2n)/x^2 )}  ⇒f(x)∼ 2n x^(n−2)    n>2 ⇒lim_(x→+∞) f(x)=+∞  n=2  ⇒lim_(x→+∞) f(x)=2n =4  n=0 ⇒f(x)=0  n=1 ⇒ lim_(x→+∞) f(x)=0
2)wehavef(x)=xn{(1+1x2)n(11x2)n}but(1+1x2)n1+nx2and(11x2)n1nx2(x)f(x)xn{2nx2}f(x)2nxn2n>2limx+f(x)=+n=2limx+f(x)=2n=4n=0f(x)=0n=1limx+f(x)=0
Commented by maxmathsup by imad last updated on 27/Oct/18
3) we have f(x)=2 Σ_(k=0) ^([((n−1)/2)])  C_n ^(2k+1)  x^(n−4k−2)  ⇒  ∫_1 ^3 f(x)dx =2 Σ_(k=0) ^([((n−1)/2)])  C_n ^(2k+1)  [(1/(n−4k−1)) x^(n−4k−1) ]_1 ^3   =2 Σ_(k=0) ^([((n−1)/2)])    (C_n ^(2k+1) /(n−4k−1)){3^(n−4k−1)  −1} .
3)wehavef(x)=2k=0[n12]Cn2k+1xn4k213f(x)dx=2k=0[n12]Cn2k+1[1n4k1xn4k1]13=2k=0[n12]Cn2k+1n4k1{3n4k11}.

Leave a Reply

Your email address will not be published. Required fields are marked *