Question Number 46421 by maxmathsup by imad last updated on 25/Oct/18

Commented by maxmathsup by imad last updated on 27/Oct/18
![1) the binome formulae give f(x)=Σ_(k=0) ^n C_n ^k x^k (1/x^(n−k) ) −Σ_(k=0) ^n C_n ^k x^k (((−1)^(n−k) )/x^(n−k) ) = Σ_(k=0) ^n C_n ^k x^(2k−n) −Σ_(k.=0) ^n C_n ^k (−1)^(n−k) x^(2k−n) =Σ_(k=0) ^n C_n ^k (1−(−1)^(n−k) )x^(2k−n) =Σ_(k=0) ^n (1−(−1)^(n−k) )C_n ^k x^(2k−n) =_(n−k =p) Σ_(p=0) ^n (1−(−1)^p ) C_n ^(n−p) x^(2(n−p)−n) =Σ_(p=0) ^n (1−(−1)^p ) C_n ^p x^(n−2p) =Σ_(k=0) ^([((n−1)/2)]) 2 C_n ^(2k+1) x^(n−2(2k+1)) = 2 Σ_(k=0) ^([((n−1)/2)]) C_n ^(2k+1) x^(n−4k−2) .](https://www.tinkutara.com/question/Q46518.png)
Commented by maxmathsup by imad last updated on 27/Oct/18

Commented by maxmathsup by imad last updated on 27/Oct/18
![3) we have f(x)=2 Σ_(k=0) ^([((n−1)/2)]) C_n ^(2k+1) x^(n−4k−2) ⇒ ∫_1 ^3 f(x)dx =2 Σ_(k=0) ^([((n−1)/2)]) C_n ^(2k+1) [(1/(n−4k−1)) x^(n−4k−1) ]_1 ^3 =2 Σ_(k=0) ^([((n−1)/2)]) (C_n ^(2k+1) /(n−4k−1)){3^(n−4k−1) −1} .](https://www.tinkutara.com/question/Q46521.png)