Question Number 171484 by infinityaction last updated on 16/Jun/22

Commented by mr W last updated on 16/Jun/22

Answered by mr W last updated on 16/Jun/22
![f(x)=x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +... xf(x)=x^2 +(2/(1.3))x^4 +((2.4)/(1.3.5))x^6 +((2.4.6)/(1.3.5.7))x^8 +... ∫_0 ^x xf(x)dx=(1/3)x^3 +(2/(1.3.5))x^5 +((2.4)/(1.3.5.7))x^7 +((2.4.6)/(1.3.5.7.9))x^9 +... (1/x)∫_0 ^x xf(x)dx=(1/(1.3))x^2 +(2/(1.3.5))x^4 +((2.4)/(1.3.5.7))x^6 +((2.4.6)/(1.3.5.7.9))x^8 +... [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x+((2.4)/(1.3.5))x^3 +((2.4.6)/(1.3.5.7))x^5 +((2.4.6.8)/(1.3.5.7.9))x^7 +... x^2 [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +... x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +... x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+f(x) x^2 [−(1/x^2 )∫_0 ^x xf(x)dx+f(x)]=−x+f(x) ∫_0 ^x xf(x)dx=(x^2 −1)f(x)+x xf(x)=2xf(x)+(x^2 −1)f′(x)+1 (x^2 −1)f′(x)+xf(x)+1=0 ⇒f′(x)+(x/(x^2 −1))f(x)=(1/(1−x^2 )) I=e^(∫((x dx)/(x^2 −1))) =e^((ln ∣1−x^2 ∣)/2) =(√(1−x^2 )) ⇒f(x)=(1/( (√(1−x^2 ))))∫((√(1−x^2 ))/( 1−x^2 ))dx=((sin^(−1) x)/( (√(1−x^2 ))))+C f(0)=0 ⇒C=0 ⇒f(x)=((sin^(−1) x)/( (√(1−x^2 )))) ⇒f((1/( (√2))))=(((√2)π)/4)](https://www.tinkutara.com/question/Q171495.png)
Commented by infinityaction last updated on 16/Jun/22

Commented by Tawa11 last updated on 16/Jun/22

Answered by qaz last updated on 16/Jun/22

Commented by infinityaction last updated on 16/Jun/22

Answered by infinityaction last updated on 16/Jun/22
