Menu Close

let-f-x-x-2-1-3-x-3-2-4-1-3-5-x-5-2-4-6-1-3-5-7-x-7-x-0-1-the-value-of-f-1-2-




Question Number 171484 by infinityaction last updated on 16/Jun/22
      let f(x) = x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +.........      ∀x∈(0,1)  the value of  f((1/( (√2)))) = ?
letf(x)=x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+x(0,1)thevalueoff(12)=?
Commented by mr W last updated on 16/Jun/22
i got  f(x)=((sin^(−1) x)/( (√(1−x^2 ))))  f((1/( (√2))))=(((√2)π)/4)
igotf(x)=sin1x1x2f(12)=2π4
Answered by mr W last updated on 16/Jun/22
f(x)=x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +...  xf(x)=x^2 +(2/(1.3))x^4 +((2.4)/(1.3.5))x^6 +((2.4.6)/(1.3.5.7))x^8 +...  ∫_0 ^x xf(x)dx=(1/3)x^3 +(2/(1.3.5))x^5 +((2.4)/(1.3.5.7))x^7 +((2.4.6)/(1.3.5.7.9))x^9 +...  (1/x)∫_0 ^x xf(x)dx=(1/(1.3))x^2 +(2/(1.3.5))x^4 +((2.4)/(1.3.5.7))x^6 +((2.4.6)/(1.3.5.7.9))x^8 +...  [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x+((2.4)/(1.3.5))x^3 +((2.4.6)/(1.3.5.7))x^5 +((2.4.6.8)/(1.3.5.7.9))x^7 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+x+(2/(1.3))x^3 +((2.4)/(1.3.5))x^5 +((2.4.6)/(1.3.5.7))x^7 +((2.4.6.8)/(1.3.5.7.9))x^9 +...  x^2 [(1/x)∫_0 ^x xf(x)dx]′=−x+f(x)  x^2 [−(1/x^2 )∫_0 ^x xf(x)dx+f(x)]=−x+f(x)  ∫_0 ^x xf(x)dx=(x^2 −1)f(x)+x  xf(x)=2xf(x)+(x^2 −1)f′(x)+1  (x^2 −1)f′(x)+xf(x)+1=0  ⇒f′(x)+(x/(x^2 −1))f(x)=(1/(1−x^2 ))  I=e^(∫((x dx)/(x^2 −1))) =e^((ln ∣1−x^2 ∣)/2) =(√(1−x^2 ))  ⇒f(x)=(1/( (√(1−x^2 ))))∫((√(1−x^2 ))/( 1−x^2 ))dx=((sin^(−1) x)/( (√(1−x^2 ))))+C  f(0)=0 ⇒C=0  ⇒f(x)=((sin^(−1) x)/( (√(1−x^2 ))))  ⇒f((1/( (√2))))=(((√2)π)/4)
f(x)=x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+xf(x)=x2+21.3x4+2.41.3.5x6+2.4.61.3.5.7x8+0xxf(x)dx=13x3+21.3.5x5+2.41.3.5.7x7+2.4.61.3.5.7.9x9+1x0xxf(x)dx=11.3x2+21.3.5x4+2.41.3.5.7x6+2.4.61.3.5.7.9x8+[1x0xxf(x)dx]=21.3x+2.41.3.5x3+2.4.61.3.5.7x5+2.4.6.81.3.5.7.9x7+x2[1x0xxf(x)dx]=21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+2.4.6.81.3.5.7.9x9+x2[1x0xxf(x)dx]=x+x+21.3x3+2.41.3.5x5+2.4.61.3.5.7x7+2.4.6.81.3.5.7.9x9+x2[1x0xxf(x)dx]=x+f(x)x2[1x20xxf(x)dx+f(x)]=x+f(x)0xxf(x)dx=(x21)f(x)+xxf(x)=2xf(x)+(x21)f(x)+1(x21)f(x)+xf(x)+1=0f(x)+xx21f(x)=11x2I=exdxx21=eln1x22=1x2f(x)=11x21x21x2dx=sin1x1x2+Cf(0)=0C=0f(x)=sin1x1x2f(12)=2π4
Commented by infinityaction last updated on 16/Jun/22
thank you sir  nice solution
thankyousirnicesolution
Commented by Tawa11 last updated on 16/Jun/22
Great sir.
Greatsir.
Answered by qaz last updated on 16/Jun/22
f(x)=Σ_(k=0) ^∞ (((2k)!!)/((2k+1)!!))x^(2k+1) =Σ_(k=0) ^∞ x^(2k+1) ∫_0 ^(π/2) sin^(2k+1) tdt=∫_0 ^(π/2) ((xsin t)/(1−(xsin t)^2 ))dt  ⇒f((1/( (√2))))=(1/( (√2)))∫_0 ^(π/2) ((sin t)/(1−(1/2)sin^2 t))dt  =(√2)∫_0 ^(π/2) ((sin t)/(1+cos^2 t))dt  =(√2)∙arctan (cos t)∣_(π/2) ^0   =(((√2)π)/4)
f(x)=k=0(2k)!!(2k+1)!!x2k+1=k=0x2k+10π/2sin2k+1tdt=0π/2xsint1(xsint)2dtf(12)=120π/2sint112sin2tdt=20π/2sint1+cos2tdt=2arctan(cost)π/20=2π4
Commented by infinityaction last updated on 16/Jun/22
amazing solution sir
amazingsolutionsir
Answered by infinityaction last updated on 16/Jun/22

Leave a Reply

Your email address will not be published. Required fields are marked *