Menu Close

let-f-x-x-2-1-x-4-1-calculate-f-n-x-2-find-f-n-0-3-developp-f-at-integr-serie-4-calculate-0-1-f-x-dx-




Question Number 37820 by prof Abdo imad last updated on 17/Jun/18
let f(x)= (x^2 /(1+x^4 ))  1) calculate f^((n)) (x)  2) find f^((n)) (0)  3) developp f at integr serie  4) calculate ∫_0 ^1 f(x)dx.
letf(x)=x21+x41)calculatef(n)(x)2)findf(n)(0)3)developpfatintegrserie4)calculate01f(x)dx.
Commented by prof Abdo imad last updated on 18/Jun/18
2) f^((n)) (0)=(((−1)^n n!)/4) e^(−((iπ)/4))   ((−1)^(n+1)  −1) e^(−i((n+1)/4)π)   +(((−1)^n n!)/4) e^((iπ)/4)   ((−1)^(n+1)  −1) e^((i(n+1)π)/4)   =(((−1)^n n!)/4)((−1)^(n+1) −1){ e^(−(((n+2))/4)π)   +e^((i(n+2)π)/4) }  =(((−1)^n n!)/2){(−1)^(n+1) −1)cos((((n+2)π)/4))  ⇒f^((2n)) (0)= (((2n)!)/2)(−2)cos (((2n+2)π)/4)  =−(2n)! cos( ((nπ)/2) +(π/2))=(2n)! sin(((nπ)/2))  and f^((2n+1)) (0)=0  3) we have  f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   ((f^((2n)) (0))/((2n)!)) x^(2n)   =Σ_(n=0) ^∞  sin(((nπ)/2)) x^(2n)   .but sin(((nπ)/2))=0 ifn=2p  and sin(((nπ)/2))=sin((((2p+1)π)/2))=sin(pπ+(π/2))  =(−1)^(p   )   if n=2p+1 ⇒  f(x)= Σ_(n=0) ^∞   (−1)^n  x^(2(2n+1))   =Σ_(n=0) ^∞    (−1)^n  x^(4n+2)   .the radius of convergence  is R=1 .
2)f(n)(0)=(1)nn!4eiπ4((1)n+11)ein+14π+(1)nn!4eiπ4((1)n+11)ei(n+1)π4=(1)nn!4((1)n+11){e(n+2)4π+ei(n+2)π4}=(1)nn!2{(1)n+11)cos((n+2)π4)f(2n)(0)=(2n)!2(2)cos(2n+2)π4=(2n)!cos(nπ2+π2)=(2n)!sin(nπ2)andf(2n+1)(0)=03)wehavef(x)=n=0f(n)(0)n!xn=n=0f(2n)(0)(2n)!x2n=n=0sin(nπ2)x2n.butsin(nπ2)=0ifn=2pandsin(nπ2)=sin((2p+1)π2)=sin(pπ+π2)=(1)pifn=2p+1f(x)=n=0(1)nx2(2n+1)=n=0(1)nx4n+2.theradiusofconvergenceisR=1.
Commented by prof Abdo imad last updated on 18/Jun/18
1) we have f(x)= (x^2 /((x^2 )^2 −i^2 ))  =(x^2 /((x^2 −i)(x^2 +i))) = (x^2 /((x−e^(i(π/4)) )(x+e^((iπ)/4) )(x−e^(−((iπ)/4)) )(x+e^(−((iπ)/4)) )))  = (a/(x−e^((iπ)/4) ))  +(b/(x +e^(i(π/4)) ))  +(c/(x−e^(−((iπ)/4)) )) +(d/(x(1/)+e^(−((iπ)/4)) ))  let p(x)=1+x^4   we have  λ_i = (z_i ^2 /(4z_i ^3 )) = (1/(4 z_i )) ⇒  a=  (1/4) e^(−((iπ)/4))   b =−(1/4)e^(−((iπ)/4))   c = (1/4) e^((iπ)/4)   d=−(1/4)e^((iπ)/4)   ⇒  f(x)=(1/4)e^(−((iπ)/4))    (1/(x−e^((iπ)/4) )) −(1/4)e^(−((iπ)/4))    (1/(x +e^((iπ)/4) ))  +(1/4)e^((iπ)/4)  (1/(x−e^(−((iπ)/4)) )) −(1/4) e^((iπ)/4)  (1/(x+e^(−((iπ)/4)) )) ⇒  f^((n)) (x)=(1/4)e^(−((iπ)/4))   (−1)^n n!{ (1/((x−e^((iπ)/4) )^(n+1) ))−(1/((x+e^(i(π/4)) )^(n+1) ))}  +(1/4)e^((iπ)/4) (−1)^n n!{  (1/((x−e^(−((iπ)/4)) )^(n+1) )) −(1/((x+e^(−((iπ)/4)) )^(n+1) ))}
1)wehavef(x)=x2(x2)2i2=x2(x2i)(x2+i)=x2(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx1+eiπ4letp(x)=1+x4wehaveλi=zi24zi3=14zia=14eiπ4b=14eiπ4c=14eiπ4d=14eiπ4f(x)=14eiπ41xeiπ414eiπ41x+eiπ4+14eiπ41xeiπ414eiπ41x+eiπ4f(n)(x)=14eiπ4(1)\boldsymboln\boldsymboln!{1(xeiπ4)n+11(x+eiπ4)n+1}+14eiπ4(1)nn!{1(xeiπ4)n+11(x+eiπ4)n+1}
Answered by behi83417@gmail.com last updated on 18/Jun/18
f(x)=(1/2).((2x^2 )/((x^2 +i)(x^2 −i)))=(1/2).(((x^2 +i)+(x^2 −i))/((x^2 +i)(x^2 −i)))=  =(1/2)[(1/(x^2 +i))+(1/(x^2 −i))]=(1/2)[(1/((x+i(√i))(x−i(√i))))+  +(1/((x−(√i))(x+(√i))))]=(1/2)[(1/(2i(√i)))[(((x+i(√i))−(x−i(√i)))/((x+i(√i))(x−i(√i))))]+  +[(1/(2(√i)))[(((x+(√i))−(x−(√i)))/((x+(√i))(x−(√i))))]]=^((√i)=a)   =−(a/4)[(1/(x−a^3 ))−(1/(x+a^3 ))+(i/(x−a))−(i/(x+a))]  f^1 (x)=−(a/4)[((−1)/((x−a^3 )^2 ))+(1/((x+a^3 )^2 ))−(i/((x+a)^2 ))+(i/((x−a)^2 ))]  f^n (x)=((n!a(−1)^n )/4)[(1/((x−a^3 )^(n+1) ))−(1/((x−a^3 )^(n+1) ))+  +(i/((x−a)^(n+1) ))−(i/((x−a)^(n+1) ))] .  2)f^n (0)=0  4)∫((x^2 dx)/(1+x^4 ))=−(a/4)[ln((x+a^3 )/(x−a^3 ))+i.ln((x+a)/(x−a))]  F(1)=−(a/4)[ln((1+a^3 )/(1−a^3 ))+i.ln((1+a)/(1−a))]=  −((√i)/4)[i(√i)+(√i)−i+i(i(√i)+(√i)+i)]=  =−((√i)/4)[i(√i)+(√i)−i−(√i)+i(√i)−1]=  =−((√i)/4)[2i(√i)−i−1]=−(1/4)(−2−i(√i)−(√i))  F(0)=−(a/4)[ln(−1)+i.ln(−1)]=  =−(a/4)(((iπ)/2)+i.((iπ)/2))=−((π(√i))/8)(i−1)=((π(√i))/8)(1−i).  I=F(1)−F(0)=(1/8)[4+(i+1)(√i)+π(√i)(i−1)].  i=cos(π/2)+isin(π/2)=e^((iπ)/2) ⇒(√i)=e^((iπ)/4)   ((1+a^3 )/(1−a^3 ))=(((1+a^3 )^2 )/(1−a^6 ))=(((1+2i(√i)−i))/(1+i)).((1−i)/(1−i))=  =(1/2)(1−i+2i(√i)+2(√i)−i−1)=i(√i)+(√i)−i  ((1+a)/(1−a))=(((1+a)^2 )/(1−a^2 ))=((1+2(√i)+i)/(1−i)).((1+i)/(1+i))=  =(1/2)(1+i+2(√i)+2i(√i)+i−1)=i(√i)+(√i)+i
f(x)=12.2x2(x2+i)(x2i)=12.(x2+i)+(x2i)(x2+i)(x2i)==12[1x2+i+1x2i]=12[1(x+ii)(xii)++1(xi)(x+i)]=12[12ii[(x+ii)(xii)(x+ii)(xii)]++[12i[(x+i)(xi)(x+i)(xi)]]=i=a=a4[1xa31x+a3+ixaix+a]f1(x)=a4[1(xa3)2+1(x+a3)2i(x+a)2+i(xa)2]fn(x)=n!a(1)n4[1(xa3)n+11(xa3)n+1++i(xa)n+1i(xa)n+1].2)fn(0)=04)x2dx1+x4=a4[lnx+a3xa3+i.lnx+axa]F(1)=a4[ln1+a31a3+i.ln1+a1a]=i4[ii+ii+i(ii+i+i)]==i4[ii+iii+ii1]==i4[2iii1]=14(2iii)F(0)=a4[ln(1)+i.ln(1)]==a4(iπ2+i.iπ2)=πi8(i1)=πi8(1i).I=F(1)F(0)=18[4+(i+1)i+πi(i1)].i=cosπ2+isinπ2=eiπ2i=eiπ41+a31a3=(1+a3)21a6=(1+2iii)1+i.1i1i==12(1i+2ii+2ii1)=ii+ii1+a1a=(1+a)21a2=1+2i+i1i.1+i1+i==12(1+i+2i+2ii+i1)=ii+i+i
Commented by math khazana by abdo last updated on 18/Jun/18
sir Behi  if  f(x)= (1/(x+a))   a from C we have  f^((n)) (x)= (((−1)^n n!)/((x+a)^(n+1) ))  !
sirBehiiff(x)=1x+aafromCwehavef(n)(x)=(1)nn!(x+a)n+1!
Commented by behi83417@gmail.com last updated on 18/Jun/18
corrected! thanks.
corrected!thanks.corrected!thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *