Menu Close

let-f-x-x-2-1-x-dt-1-t-t-2-1-calculate-f-x-interms-of-x-2-calculate-lim-x-0-f-x-and-lim-x-f-x-




Question Number 55273 by maxmathsup by imad last updated on 20/Feb/19
let  f(x) =∫_x^2  ^(1+x)   (dt/(1+t+t^2 ))  1) calculate f(x) interms of x  2) calculate lim_(x→0) f(x) and lim_(x→+∞)   f(x)
letf(x)=x21+xdt1+t+t21)calculatef(x)intermsofx2)calculatelimx0f(x)andlimx+f(x)
Commented by maxmathsup by imad last updated on 21/Feb/19
1) we have f(x)=∫_x^2  ^(1+x)   (dt/(t^2  +2 (t/2)+(1/4)+(3/4))) =∫_x^2  ^(1+x)   (dt/((t+(1/2))^(2 )  +(3/4)))  =_(t+(1/2)=((√3)/2)u)      (4/3)∫_((2x^2 +1)/( (√3))) ^((2(1+x)+1)/( (√3)))  (1/(1+u^2 )) ((√3)/2) du =(2/( (√3)))[arctan(u)]_((2x^2 +1)/( (√3))) ^((2x+3)/( (√3)))  ⇒  f(x)=(2/( (√3))){ arctan(((2x+3)/( (√3))))−arctan(((2x^2  +1)/( (√3))))}  2)lim_(x→0) f(x)=(2/( (√3))){ arctan((√3)) −arctan((1/( (√3))))}  =(2/( (√3))){ (π/3) −(π/6)} =(2/( (√3))){(π/6)} =(π/(3(√3)))  lim_(x→+∞) f(x) =(2/( (√3))){ arctan(+∞)−arctan(+∞)}=(2/( (√3))){(π/2) −(π/2)}=0
1)wehavef(x)=x21+xdtt2+2t2+14+34=x21+xdt(t+12)2+34=t+12=32u432x2+132(1+x)+1311+u232du=23[arctan(u)]2x2+132x+33f(x)=23{arctan(2x+33)arctan(2x2+13)}2)limx0f(x)=23{arctan(3)arctan(13)}=23{π3π6}=23{π6}=π33limx+f(x)=23{arctan(+)arctan(+)}=23{π2π2}=0

Leave a Reply

Your email address will not be published. Required fields are marked *