Question Number 55273 by maxmathsup by imad last updated on 20/Feb/19
$${let}\:\:{f}\left({x}\right)\:=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{\mathrm{1}+{t}+{t}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)\:{interms}\:{of}\:{x} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:{f}\left({x}\right) \\ $$
Commented by maxmathsup by imad last updated on 21/Feb/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}\:\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}}\:=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}\:} \:+\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=_{{t}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}} \:\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\int_{\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}\left(\mathrm{1}+{x}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} \:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{du}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left[{arctan}\left({u}\right)\right]_{\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}{x}+\mathrm{3}}{\:\sqrt{\mathrm{3}}}} \:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(\frac{\mathrm{2}{x}+\mathrm{3}}{\:\sqrt{\mathrm{3}}}\right)−{arctan}\left(\frac{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$\left.\mathrm{2}\right){lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(\sqrt{\mathrm{3}}\right)\:−{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:\frac{\pi}{\mathrm{3}}\:−\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(+\infty\right)−{arctan}\left(+\infty\right)\right\}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{2}}\right\}=\mathrm{0} \\ $$