Menu Close

let-f-x-x-2-1-x-dt-1-t-t-2-1-calculate-f-x-interms-of-x-2-calculate-lim-x-0-f-x-and-lim-x-f-x-




Question Number 55273 by maxmathsup by imad last updated on 20/Feb/19
let  f(x) =∫_x^2  ^(1+x)   (dt/(1+t+t^2 ))  1) calculate f(x) interms of x  2) calculate lim_(x→0) f(x) and lim_(x→+∞)   f(x)
$${let}\:\:{f}\left({x}\right)\:=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{\mathrm{1}+{t}+{t}^{\mathrm{2}} } \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{f}\left({x}\right)\:{interms}\:{of}\:{x} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)\:{and}\:{lim}_{{x}\rightarrow+\infty} \:\:{f}\left({x}\right) \\ $$
Commented by maxmathsup by imad last updated on 21/Feb/19
1) we have f(x)=∫_x^2  ^(1+x)   (dt/(t^2  +2 (t/2)+(1/4)+(3/4))) =∫_x^2  ^(1+x)   (dt/((t+(1/2))^(2 )  +(3/4)))  =_(t+(1/2)=((√3)/2)u)      (4/3)∫_((2x^2 +1)/( (√3))) ^((2(1+x)+1)/( (√3)))  (1/(1+u^2 )) ((√3)/2) du =(2/( (√3)))[arctan(u)]_((2x^2 +1)/( (√3))) ^((2x+3)/( (√3)))  ⇒  f(x)=(2/( (√3))){ arctan(((2x+3)/( (√3))))−arctan(((2x^2  +1)/( (√3))))}  2)lim_(x→0) f(x)=(2/( (√3))){ arctan((√3)) −arctan((1/( (√3))))}  =(2/( (√3))){ (π/3) −(π/6)} =(2/( (√3))){(π/6)} =(π/(3(√3)))  lim_(x→+∞) f(x) =(2/( (√3))){ arctan(+∞)−arctan(+∞)}=(2/( (√3))){(π/2) −(π/2)}=0
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x}\right)=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}\:\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}}\:=\int_{{x}^{\mathrm{2}} } ^{\mathrm{1}+{x}} \:\:\frac{{dt}}{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}\:} \:+\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=_{{t}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{u}} \:\:\:\:\:\frac{\mathrm{4}}{\mathrm{3}}\int_{\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}\left(\mathrm{1}+{x}\right)+\mathrm{1}}{\:\sqrt{\mathrm{3}}}} \:\frac{\mathrm{1}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{du}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left[{arctan}\left({u}\right)\right]_{\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{\frac{\mathrm{2}{x}+\mathrm{3}}{\:\sqrt{\mathrm{3}}}} \:\Rightarrow \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(\frac{\mathrm{2}{x}+\mathrm{3}}{\:\sqrt{\mathrm{3}}}\right)−{arctan}\left(\frac{\mathrm{2}{x}^{\mathrm{2}} \:+\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$\left.\mathrm{2}\right){lim}_{{x}\rightarrow\mathrm{0}} {f}\left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(\sqrt{\mathrm{3}}\right)\:−{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\right\} \\ $$$$=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:\frac{\pi}{\mathrm{3}}\:−\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{6}}\right\}\:=\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}} \\ $$$${lim}_{{x}\rightarrow+\infty} {f}\left({x}\right)\:=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\:{arctan}\left(+\infty\right)−{arctan}\left(+\infty\right)\right\}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left\{\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\mathrm{2}}\right\}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *