Menu Close

let-f-x-x-2-3-2x-1-1-calculate-0-1-f-x-dx-2-determine-f-1-x-and-calculate-f-1-x-dx-




Question Number 56831 by maxmathsup by imad last updated on 24/Mar/19
let f(x) =(√(x^2 +3))−2x −1  1)  calculate ∫_0 ^1 f(x)dx  2)determine f^(−1) (x) and calculate ∫ f^(−1) (x)dx .
letf(x)=x2+32x11)calculate01f(x)dx2)determinef1(x)andcalculatef1(x)dx.
Commented by kaivan.ahmadi last updated on 25/Mar/19
I=∫_0 ^1 (√(x^2 +3))dx  x=(√3)tgα⇒dx=(√3)sec^2 αdα  (√(x^2 +3))=(√3)secα   { ((x=0⇒α=0)),((x=1⇒α=(π/6))) :}⇒  I=3∫_0 ^(π/6) sec^3 αdα=  (1/2)secαtgα+(1/2)ln∣secα+tgα∣]_0 ^(π/6) =  ((1/2)×((√3)/2)×((√3)/3)+(1/2)ln(((√3)/2)+((√3)/3)))−0=  (1/4)+(1/2)ln(((5(√3))/6))  J=∫_0 ^1 (−2x−1)dx=−x^2 −x]_0 ^1 =  (−1−1)−0=−2  ∫_0 ^1 f(x)dx=I+J=((−7)/4)+(1/2)ln(((5(√3))/6))
I=01x2+3dxx=3tgαdx=3sec2αdαx2+3=3secα{x=0α=0x=1α=π6I=30π6sec3αdα=12secαtgα+12lnsecα+tgα]0π6=(12×32×33+12ln(32+33))0=14+12ln(536)J=01(2x1)dx=x2x]01=(11)0=201f(x)dx=I+J=74+12ln(536)
Commented by kaivan.ahmadi last updated on 24/Mar/19
y=(√(x^2 +3))−2x−1⇒y+1=(√(x^2 +3))−2x  ⇒(y+1)^2 =x^2 +3+4x^2 −4x(√(x^2 +3))⇒  (y+1)^2 =5x^2 −4x(√(x^2 +3))+3=  5x^2 −4x(y+2x+1)+3=  −3x^2 −4xy−4x+3⇒  −3x^2 −(4y+4)x+3−(y+1)^2 =0⇒  Δ=(4y+4)^2 +36−12(y+1)^2 =  4(y+1)^2 +36=4((y+1)^2 +9)=  x=(((4y+4)±(√Δ))/(−6))=((4(y+1)±2(√((y+1)^2 +9)))/(−6))=  ⇒f^(−1) (x)=((−2)/3)(x+1)±((−1)/3)(√((x+1)^2 +9))
y=x2+32x1y+1=x2+32x(y+1)2=x2+3+4x24xx2+3(y+1)2=5x24xx2+3+3=5x24x(y+2x+1)+3=3x24xy4x+33x2(4y+4)x+3(y+1)2=0Δ=(4y+4)2+3612(y+1)2=4(y+1)2+36=4((y+1)2+9)=x=(4y+4)±Δ6=4(y+1)±2(y+1)2+96=f1(x)=23(x+1)±13(x+1)2+9
Commented by Abdo msup. last updated on 25/Mar/19
sir Ahmadi wher are you from....
sirAhmadiwherareyoufrom.
Commented by kaivan.ahmadi last updated on 25/Mar/19
Hi dear Abdo, i′m Iranian
HidearAbdo,imIranian
Commented by maxmathsup by imad last updated on 25/Mar/19
wich you good luck sir i hope to visit Iran somedays....
wichyougoodlucksirihopetovisitIransomedays.
Commented by maxmathsup by imad last updated on 26/Mar/19
1) ∫_0 ^1 f(x)dx =∫_0 ^1 (√(x^2 +3))dx −∫_0 ^1 (2x+1)dx    ∫_0 ^1 (2x+1)dx =[x^2  +x]_0 ^1 =2  ∫_0 ^1 (√(x^2  +3))dx =_(x=(√3)sh(t))    ∫_0 ^(arsh((1/( (√3))))) (√3)ch(t)(√3)ch(t)dt =3 ∫_0 ^(argsh((1/( (√3))))) ((1+ch(2t))/2)dt  =(3/2) argsh((1/( (√3)))) +(3/4) [sh(2t)]_0 ^(argsh((1/( (√3))))) =(3/2)ln((1/( (√3))) +(√(4/3))) +(3/8)[e^(2t) −e^(−2t) ]_0 ^(argsh((1/( (√3)))))   =(3/2)ln((√3)) +(3/8){ 3−(1/3)} =(3/4)ln(3) +1 ⇒∫_0 ^1 f(x)dx =(3/4)ln(3)−1 .
1)01f(x)dx=01x2+3dx01(2x+1)dx01(2x+1)dx=[x2+x]01=201x2+3dx=x=3sh(t)0arsh(13)3ch(t)3ch(t)dt=30argsh(13)1+ch(2t)2dt=32argsh(13)+34[sh(2t)]0argsh(13)=32ln(13+43)+38[e2te2t]0argsh(13)=32ln(3)+38{313}=34ln(3)+101f(x)dx=34ln(3)1.
Commented by kaivan.ahmadi last updated on 26/Mar/19
thank sir,where are you from?
thanksir,whereareyoufrom?
Commented by maxmathsup by imad last updated on 26/Mar/19
i am from morocco sir.
iamfrommoroccosir.
Commented by maxmathsup by imad last updated on 30/Mar/19
2) f(x)=y ⇔x =f^(−1) (y) and f(x)=y ⇒(√(x^2  +3))−2x−1=y ⇒  (2x+1+y)=(√(x^2  +3)) ⇒(2x+1+y)^2  =x^2  +3 ⇒  (2x+1)^2  +2(2x+1)y +y^2  =x^2  +3 ⇒  4x^2  +4x +1 +4yx +2y +y^2  −x^2 −3 =0 ⇒  3x^2  +(4+4y)x +y^2  +2y−2 =0  let find x interms of y  Δ^,  =(2+2y)^2 −3(y^2  +2y−2) =4 +8y +4y^2  −3y^2  −6y +6  =y^2  +2y  +10  =(y+1)^2  +9 ⇒ x_1 =((−2(y+1) +(√((y+1)^2  +9)))/3)  x_2 =((−2(y+1) −(√((y+1)^2  +9)))/3)   we must have 2x+1+y≥0 let verify this  condition  2x_1 +1 +y =((−4y−4 +2(√((y+1)^2  +9))+3+3y)/3)=((2(√(y^2  +2y +10))−y−1)/3)  we have 4(y^2  +2y+10)−(y+1)^2  =4y^2  +6y +40−y^2  −2y−1  =3y^2  +4y +39> ⇒x_1 is the solution ⇒f^(−1) (x)=(((√((x+1)^2 +9))−2(x+1))/3)
2)f(x)=yx=f1(y)andf(x)=yx2+32x1=y(2x+1+y)=x2+3(2x+1+y)2=x2+3(2x+1)2+2(2x+1)y+y2=x2+34x2+4x+1+4yx+2y+y2x23=03x2+(4+4y)x+y2+2y2=0letfindxintermsofyΔ,=(2+2y)23(y2+2y2)=4+8y+4y23y26y+6=y2+2y+10=(y+1)2+9x1=2(y+1)+(y+1)2+93x2=2(y+1)(y+1)2+93wemusthave2x+1+y0letverifythiscondition2x1+1+y=4y4+2(y+1)2+9+3+3y3=2y2+2y+10y13wehave4(y2+2y+10)(y+1)2=4y2+6y+40y22y1=3y2+4y+39>x1isthesolutionf1(x)=(x+1)2+92(x+1)3
Commented by maxmathsup by imad last updated on 30/Mar/19
∫ f^(−1) (x)dx =(1/3) ∫  (√((x+1)^2  +9))dx −(2/3) ∫  (x+1)dx  ∫ (x+1)dx =(x^2 /2) +x +c_1   ∫ (√((x+1)^2 +9))dx =_(x+1=3 sh(t))    ∫ 3ch(t)3ch(t) =9 ∫ ch^2 t dt  =9 ∫ ((1+ch(2t))/2) dt =(9/2) t  +(9/4) sh(2t) =(9/2)t +(9/2) ch(t)sh(t) +c_2   =(9/2) argsh(((x+1)/3)) +(9/2) ((x+1)/3) (√(1+(((x+1)/3))^2 ))  =(9/2)ln(((x+1)/3) +(√(1+(((x+1)/3))^2 )) )  +(3/2)(x+1) (√(1+(((x+1)/3))^2 )) +c_2  ⇒  ∫ f^(−1) (x)dx = (3/z)ln(((x+1)/3) +(√(1+(((x+1)/3))^2 )))  +((x+1)/2)(√(1+(((x+1)/3))^2 )) −(1/3)x^2  −(2/3)x +C
f1(x)dx=13(x+1)2+9dx23(x+1)dx(x+1)dx=x22+x+c1(x+1)2+9dx=x+1=3sh(t)3ch(t)3ch(t)=9ch2tdt=91+ch(2t)2dt=92t+94sh(2t)=92t+92ch(t)sh(t)+c2=92argsh(x+13)+92x+131+(x+13)2=92ln(x+13+1+(x+13)2)+32(x+1)1+(x+13)2+c2f1(x)dx=3zln(x+13+1+(x+13)2)+x+121+(x+13)213x223x+C
Answered by MJS last updated on 25/Mar/19
y=(√(x^2 +3))−2x−1  ⇒ x=−(1/3)(2y+2±(√(y^2 +2y+10)))  but we have to square the equation to get  this ⇒ one solution could be wrong  with y=x we get  x=(√(x^2 +3))−2x−1 ⇒ x=(1/4)  x=−(1/3)(2(x+1)−(√(x^2 +2x+10))) ⇒ x=(1/4)  x=−(1/3)(2(x+1)+(√(x^2 +2x+10))) ⇒ x=−1  ⇒ f^(−1) (x)=−(1/3)(2(x+1)−(√(x^2 +2x+10)))  I get  ∫f(x)dx=−x(x+1)+(1/2)x(√(x^2 +3))+(3/2)ln (x+(√(x^2 +3))) +C  ∫f^(−1) (x)dx=−(1/3)x(x+2)+(1/6)(x+1)(√(x^2 +2x+10))+(3/2)ln (x+1+(√(x^2 +2x+10))) +C
y=x2+32x1x=13(2y+2±y2+2y+10)butwehavetosquaretheequationtogetthisonesolutioncouldbewrongwithy=xwegetx=x2+32x1x=14x=13(2(x+1)x2+2x+10)x=14x=13(2(x+1)+x2+2x+10)x=1f1(x)=13(2(x+1)x2+2x+10)Igetf(x)dx=x(x+1)+12xx2+3+32ln(x+x2+3)+Cf1(x)dx=13x(x+2)+16(x+1)x2+2x+10+32ln(x+1+x2+2x+10)+C
Commented by kaivan.ahmadi last updated on 25/Mar/19
if F(x)=x(x+1)+(1/2)x(√(x^2 +3))+(3/2)ln(x+(√(x^2 +3)))⇒  then f(x)=F′(x)  Mr MJS can you prove it?
ifF(x)=x(x+1)+12xx2+3+32ln(x+x2+3)thenf(x)=F(x)MrMJScanyouproveit?
Commented by maxmathsup by imad last updated on 25/Mar/19
thanks sir .
thankssir.
Commented by MJS last updated on 25/Mar/19
F(x)=−x(x+1)+(1/2)x(√(x^2 +3))+(3/2)ln (x+(√(x^2 +3)))  F′(x)=(d/dx)[−x(x+1)]+(d/dx)[(1/2)x(√(x^2 +3))]+(d/dx)[(3/2)ln (x+(√(x^2 +3)))]  (d/dx)[−x(x+1)]=−2x−1  (d/dx)[(1/2)x(√(x^2 +3))]=(1/2)((√(x^2 +3))+(x^2 /( (√(x^2 +3)))))=((2x^2 +3)/(2(√(x^2 +3))))  (d/dx)[(3/2)ln (x+(√(x^2 +3)))]=(3/2)((1/(x+(√(x^2 +3))))(1+(x/( (√(x^2 +3))))))=  =(3/2)(((x−(√(x^2 +3)))/(−3))×((x+(√(x^2 +3)))/( (√(x^2 +3)))))=(3/(2(√(x^2 +3))))  −2x−1+((2x^2 +3)/(2(√(x^2 +3))))+(3/(2(√(x^2 +3))))=  −2x−1+((2x^2 +6)/(2(√(x^2 +3))))=−2x−1+((x^2 +3)/( (√(x^2 +3))))=  =(√(x^2 +3))−2x−1
F(x)=x(x+1)+12xx2+3+32ln(x+x2+3)F(x)=ddx[x(x+1)]+ddx[12xx2+3]+ddx[32ln(x+x2+3)]ddx[x(x+1)]=2x1ddx[12xx2+3]=12(x2+3+x2x2+3)=2x2+32x2+3ddx[32ln(x+x2+3)]=32(1x+x2+3(1+xx2+3))==32(xx2+33×x+x2+3x2+3)=32x2+32x1+2x2+32x2+3+32x2+3=2x1+2x2+62x2+3=2x1+x2+3x2+3==x2+32x1

Leave a Reply

Your email address will not be published. Required fields are marked *