Menu Close

let-f-x-x-2-function-2pi-peridic-even-1-developp-f-at-fourier-serie-2-find-the-value-of-n-1-1-n-4-




Question Number 45044 by maxmathsup by imad last updated on 07/Oct/18
let f(x) =x^2  , function 2π peridic even  1) developp f at fourier serie  2)find the value of Σ_(n=1) ^∞  (1/n^4 )
letf(x)=x2,function2πperidiceven1)developpfatfourierserie2)findthevalueofn=11n4
Commented by maxmathsup by imad last updated on 08/Oct/18
f is even ⇒f(x)=(a_0 /2) +Σ_(n=1) ^∞   a_n cos(nx) with   a_n =(2/T)∫_([T]) f(x)cos(nx) =(2/(2π)) ∫_(−π) ^π  x^2 cos(nx)dx  =(2/π) ∫_0 ^π  x^2 cos(nx) ⇒(π/2)a_n = ∫_0 ^π  x^2 cos(nx)  by psrts we get  ∫_0 ^π  x^2 cos(nx)dx =[(x^2 /n)sin(nx)]_0 ^π  −∫_0 ^π  ((2x)/n)sin(nx)dx  =−(2/n) ∫_0 ^π  x sin(nx)dx =−(2/n){ [−(x/n)cos(nx)]_0 ^π  −∫_0 ^π −(1/n)cos(nx)dx}  =(2/n^2 ) ( π(−1)^n ) −(2/n^2 )∫_0 ^π  cos(nx)dx =((2π(−1)^n )/n^2 ) ⇒(π/2)a_n =((2π(−1)^n )/n^2 ) ⇒  a_n = ((4(−1)^n )/n^2 )   also a_0 =(2/π) ∫_0 ^π x^2 dx =(2/π) (π^3 /3) =((2π^2 )/3) ⇒(a_0 /2) =(π^2 /3) ⇒  ★x^2  =(π^2 /3) +4 Σ_(n=1) ^∞    (((−1)^n )/n^2 ) cos(nx)★  2) the parseval formulae give (1/T)∫_([T]) f^2 (x)dx =((a_o /2))^2  +(1/2)Σ_(n≥1) (a_n ^2  +b_n ^2 ) ⇒  (1/(2π)) ∫_(−π) ^π  x^4 dx =(π^4 /9) +8 Σ_(n=1) ^∞  (1/n^4 ) ⇒(1/π) ∫_0 ^π  x^4 dx =(π^4 /9) +8 Σ_(n=1) ^∞  (1/n^4 ) ⇒  (π^4 /5) −(π^4 /9) =8Σ_(n=1) ^∞  (1/n^4 ) ⇒ Σ_(n=1) ^∞   (1/n^4 ) =(1/8)(((4π^4 )/(45))) = (π^4 /(90))  ★ Σ_(n=1) ^∞   (1/n^4 ) =(π^4 /(90)) ★
fisevenf(x)=a02+n=1ancos(nx)withan=2T[T]f(x)cos(nx)=22πππx2cos(nx)dx=2π0πx2cos(nx)π2an=0πx2cos(nx)bypsrtsweget0πx2cos(nx)dx=[x2nsin(nx)]0π0π2xnsin(nx)dx=2n0πxsin(nx)dx=2n{[xncos(nx)]0π0π1ncos(nx)dx}=2n2(π(1)n)2n20πcos(nx)dx=2π(1)nn2π2an=2π(1)nn2an=4(1)nn2alsoa0=2π0πx2dx=2ππ33=2π23a02=π23x2=π23+4n=1(1)nn2cos(nx)2)theparsevalformulaegive1T[T]f2(x)dx=(ao2)2+12n1(an2+bn2)12πππx4dx=π49+8n=11n41π0πx4dx=π49+8n=11n4π45π49=8n=11n4n=11n4=18(4π445)=π490n=11n4=π490

Leave a Reply

Your email address will not be published. Required fields are marked *