Menu Close

let-f-x-x-2-ln-1-x-3-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-f-x-dx-




Question Number 105565 by mathmax by abdo last updated on 30/Jul/20
let f(x) =x^2 ln(1−x^3 )  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie  3)calculate ∫ f(x)dx
letf(x)=x2ln(1x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculatef(x)dx
Answered by mathmax by abdo last updated on 03/Aug/20
1) f(x)=x^2 ln(1−x^3 ) ⇒f^((n)) (x) =Σ_(k=0) ^n C_n ^k  (x^2 )^((k))  (ln(1−x^3 ))^((n−k))   =C_n ^0  x^2 {ln(1−x^3 )}^((n))  +C_n ^1  (2x){ln(1−x^3 )}^((n−1))  +C_n ^2 2{ln(1−x^3 )}^((n−2))   let find {ln(1−x^3 )}^((m))  we have   {ln(1−x^3 )}^((1) )  =((−3x^2 )/(1−x^3 )) =((3x^2 )/(x^3 −1)) =((3x^2 )/((x−1)(x^2  +x+1)))  =((3x^2 )/((x−1)(x−e^(i((2π)/3)) )(x−e^(−((i2π)/3)) ))) =(a/(x−1)) +(b/(x−e^((i2π)/3) )) +(c/((x−e^(−((i2π)/3)) )))  a =1   ,b =((3e^(i((4π)/3)) )/((e^((i2π)/3) −1)(2isin(((2π)/3))))) =((3e^((i4π)/3) )/(i(√3)(e^((i2π)/3) −1)))  b =((3e^(−((i4π)/3)) )/((e^(−((i2π)/3)) −1)(−2i sin(((2π)/3))))) =((−3 e^(−((i4π)/3)) )/(i(√3)(e^(−((i2π)/3)) −1))) so the coefficient are  known ⇒{ln(1−x^3 )}^((m))  =((a/(x−1)))^((m−1))  +((b/(x−e^((i2π)/3) )))^((m−1))   +((c/((x−e^(−((i2π)/3)) ))))^((m−1))  =a (((−1)^(m−1) (m−1)!)/((x−1)^m )) +((b(−1)^(m−1) (m−1)!)/((x−e^((i2π)/3) )))  +((c(−1)^(m−1) (m−1)!)/((x−e^(−((i2π)/3)) )))  =A_n   f^((n)) (x) =x^2  A_n (x)  +2nx A_(n−1) (x) +2C_n ^2  A_(n−2) (x)
1)f(x)=x2ln(1x3)f(n)(x)=k=0nCnk(x2)(k)(ln(1x3))(nk)=Cn0x2{ln(1x3)}(n)+Cn1(2x){ln(1x3)}(n1)+Cn22{ln(1x3)}(n2)letfind{ln(1x3)}(m)wehave{ln(1x3)}(1)=3x21x3=3x2x31=3x2(x1)(x2+x+1)=3x2(x1)(xei2π3)(xei2π3)=ax1+bxei2π3+c(xei2π3)a=1,b=3ei4π3(ei2π31)(2isin(2π3))=3ei4π3i3(ei2π31)b=3ei4π3(ei2π31)(2isin(2π3))=3ei4π3i3(ei2π31)sothecoefficientareknown{ln(1x3)}(m)=(ax1)(m1)+(bxei2π3)(m1)+(c(xei2π3))(m1)=a(1)m1(m1)!(x1)m+b(1)m1(m1)!(xei2π3)+c(1)m1(m1)!(xei2π3)=Anf(n)(x)=x2An(x)+2nxAn1(x)+2Cn2An2(x)

Leave a Reply

Your email address will not be published. Required fields are marked *