let-f-x-x-2-ln-1-x-3-1-calculate-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-calculate-f-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 105565 by mathmax by abdo last updated on 30/Jul/20 letf(x)=x2ln(1−x3)1)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)calculate∫f(x)dx Answered by mathmax by abdo last updated on 03/Aug/20 1)f(x)=x2ln(1−x3)⇒f(n)(x)=∑k=0nCnk(x2)(k)(ln(1−x3))(n−k)=Cn0x2{ln(1−x3)}(n)+Cn1(2x){ln(1−x3)}(n−1)+Cn22{ln(1−x3)}(n−2)letfind{ln(1−x3)}(m)wehave{ln(1−x3)}(1)=−3x21−x3=3x2x3−1=3x2(x−1)(x2+x+1)=3x2(x−1)(x−ei2π3)(x−e−i2π3)=ax−1+bx−ei2π3+c(x−e−i2π3)a=1,b=3ei4π3(ei2π3−1)(2isin(2π3))=3ei4π3i3(ei2π3−1)b=3e−i4π3(e−i2π3−1)(−2isin(2π3))=−3e−i4π3i3(e−i2π3−1)sothecoefficientareknown⇒{ln(1−x3)}(m)=(ax−1)(m−1)+(bx−ei2π3)(m−1)+(c(x−e−i2π3))(m−1)=a(−1)m−1(m−1)!(x−1)m+b(−1)m−1(m−1)!(x−ei2π3)+c(−1)m−1(m−1)!(x−e−i2π3)=Anf(n)(x)=x2An(x)+2nxAn−1(x)+2Cn2An−2(x) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-e-2x-2x-1-2-dx-please-help-Next Next post: Question-40031 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.