Menu Close

let-f-x-x-2-x-3-4x-3-1-calculate-f-n-x-2-developp-f-at-integr-serie-




Question Number 35988 by abdo mathsup 649 cc last updated on 26/May/18
let f(x) = ((x+2)/(x^3 −4x +3))  1) calculate f^((n)) (x)  2) developp f at integr serie.
letf(x)=x+2x34x+31)calculatef(n)(x)2)developpfatintegrserie.
Commented by abdo mathsup 649 cc last updated on 27/May/18
1) we have x^3 −4x +3 =x^3  −x −3x +3  =x(x^2 −1) −3(x−1) = (x−1)( x^2  +x −3) ⇒  f(x) = ((x+2)/((x−1)(x^2  +x−3))) = (a/(x−1)) +((bx +c)/(x^2  +x−3))  a=lim_(x→1) (x−1)f(x) = (3/(−1)) =−3  lim_(x→+∞) x f(x)=0 = a +b ⇒b=−a = 3 ⇒  f(x)  =  ((−3)/(x−1)) + ((3x+c)/(x^(2 )  +x −3))  f(0) = (2/3) = 3 −(c/3) ⇒2= 9 −c ⇒ c =7 ⇒  f(x) = ((−3)/(x−1))  +((3x+7)/(x^2  +x−3)) let find the roots of  x^2  +x−3   , Δ =1−4(−3) =13  x_(1 ) = ((−1+(√(13)))/2)  ,  x_2  = ((−1−(√(13)))/2) so  ((3x+7)/(x^2  +x−3)) = ((3x+7)/((x−x_1 )(x−x_2 )))  =((3(x−x_1 ) +3x_1  +7)/((x−x_1 )(x−x_2 ))) = (3/(x−x_2 )) + ((3x_(1 )  +7)/((x−x_1 )(x−x_2 )))   (3/(x−x_2 ))  +  ((3x_1 +7)/(x_1  −x_2 )) {  (1/(x−x_1 )) −(1/(x−x_2 ))} ⇒  f(x) = −(3/(x−1))  +(3/(x−x_2 ))  + (λ/(x−x_1 )) −(λ/(x−x_2 )) with  λ = ((3x_(1 )  +7)/(x_1  −x_2 )) ⇒   f^((n)) (x) = −3 (((−1)^n  n!)/((x−1)^(n+1) )) + (3−λ)(((−1)^n  n!)/((x−x_2 )^(n+1) ))  +λ  (((−1)^n n!)/((x−x_1 )^(n+1) ))
1)wehavex34x+3=x3x3x+3=x(x21)3(x1)=(x1)(x2+x3)f(x)=x+2(x1)(x2+x3)=ax1+bx+cx2+x3a=limx1(x1)f(x)=31=3limx+xf(x)=0=a+bb=a=3f(x)=3x1+3x+cx2+x3f(0)=23=3c32=9cc=7f(x)=3x1+3x+7x2+x3letfindtherootsofx2+x3,Δ=14(3)=13x1=1+132,x2=1132so3x+7x2+x3=3x+7(xx1)(xx2)=3(xx1)+3x1+7(xx1)(xx2)=3xx2+3x1+7(xx1)(xx2)3xx2+3x1+7x1x2{1xx11xx2}f(x)=3x1+3xx2+λxx1λxx2withλ=3x1+7x1x2f(n)(x)=3(1)nn!(x1)n+1+(3λ)(1)nn!(xx2)n+1+λ(1)nn!(xx1)n+1
Commented by abdo mathsup 649 cc last updated on 27/May/18
2)  we have f^((n)) (0) = 3n! +(3−λ) ((n!)/(−x_2 ^(n+1) ))  +λ  ((n!)/(−x_1 ^(n+1) ))  f^((n)) (0) = 3(n!)  +(λ −3) ((n!)/x_2 ^(n+1) )  −λ  ((n!)/x_1 ^(n+1) )  f(x) =Σ_(n=0) ^∞   ((f^((n)) (0))/(n!)) x^n   = Σ_(n=0) ^∞   (3  +((λ−3)/x_2 ^(n+1) )  −(λ/x_1 ^(n+1) )) x^n   .
2)wehavef(n)(0)=3n!+(3λ)n!x2n+1+λn!x1n+1f(n)(0)=3(n!)+(λ3)n!x2n+1λn!x1n+1f(x)=n=0f(n)(0)n!xn=n=0(3+λ3x2n+1λx1n+1)xn.
Answered by tanmay.chaudhury50@gmail.com last updated on 27/May/18
Dr=x^3 −4x+4−1  =x^3 −1−4(x−1)  =(x−1)(x^2 +x+1)−4(x−1)  (x−1)(x^2 +x+1−4)  =(x−1)(x^2 +x−3)  ((x+2)/((x−1)(x^2 +x−3)))=(A/(x−1))+((Bx+C)/((x^2 +x−3)))  x+2=A(x^2 +x−3)+(x−1)(Bx+C)  put x=1  3=−A  so A=−3  x+2=−3x^2 −3x+9+Bx^2 +Cx−Bx−C  x+2=x^2 (−3+B)+x(−3−B+C)+9−C  −3+B=0  B=3  −3−B+C=1  −3−3+C=1   C=7  f(x)=((−3)/(x−1))+((3x+7)/(x^2 +x−3))  contf    f(x)=u+v  (u/(−3))=(x−1)^(−1)   (u_1 /(−3))=(−1)(x−1)^(−2)   (u_2 /(−3))=(−1)(−2)(x−1)^(−3)   (u_3 /(−3))=(−1)(−2)(−3)(x−1)^(−4)   .....  .....  (u_n /(−3))=(−1)(−2)(−3)...(−n)(x−1)^(−n−1)   (u_n /(−3))=(((−)^n ×n!)/((x−1)^(n+1) ))  u_n =(−3)×(((−1)^n ×n!)/((x−1)^(n+1) ))   pls check contd
Dr=x34x+41=x314(x1)=(x1)(x2+x+1)4(x1)(x1)(x2+x+14)=(x1)(x2+x3)x+2(x1)(x2+x3)=Ax1+Bx+C(x2+x3)x+2=A(x2+x3)+(x1)(Bx+C)putx=13=AsoA=3x+2=3x23x+9+Bx2+CxBxCx+2=x2(3+B)+x(3B+C)+9C3+B=0B=33B+C=133+C=1C=7f(x)=3x1+3x+7x2+x3contff(x)=u+vu3=(x1)1u13=(1)(x1)2u23=(1)(2)(x1)3u33=(1)(2)(3)(x1)4....un3=(1)(2)(3)(n)(x1)n1un3=()n×n!(x1)n+1un=(3)×(1)n×n!(x1)n+1plscheckcontd
Commented by behi83417@gmail.com last updated on 26/May/18
dear mr tanmay and mr Rasheed!  a comment have posted to Q.35844  please check it.thanks.
dearmrtanmayandmrRasheed!acommenthavepostedtoQ.35844pleasecheckit.thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *