Menu Close

let-F-x-x-2-x-3-sin-t-t-x-dt-1-calculate-lim-x-0-F-x-and-lim-x-F-x-2-calculste-lim-x-0-F-x-and-lim-x-F-x-




Question Number 63273 by mathmax by abdo last updated on 01/Jul/19
let F(x) =∫_x^2  ^x^3       ((sin(t))/(t+x)) dt  1) calculate lim_(x→0)  F(x) and lim_(x→+∞) F(x)  2)calculste lim_(x→0)  F^′ (x) and lim_(x→+∞)  F^′ (x)
letF(x)=x2x3sin(t)t+xdt1)calculatelimx0F(x)andlimx+F(x)2)calculstelimx0F(x)andlimx+F(x)
Commented by mathmax by abdo last updated on 03/Jul/19
1) ∃c ∈]x^2 ,x^3 [  wich verify  ∫_x^2  ^x^3      ((sint)/(t+x))dt =sinc ∫_x^2  ^x^3   (dt/(t+x))  =sinc [ln∣t+x∣]_(t=x^2 ) ^(t=x^3 )  =sinc {ln∣x^3  +x∣−ln∣x^2 +x∣}  =lnc ln∣((x^2 +1)/(x+1))∣ ⇒lim_(x→0)  F(x) =lim_(c→0)   ×lim_(x→0) ln∣((x^2  +1)/(x+1))∣ =0  we have  x^2 ≤t ≤x^3  ⇒x^2  +x ≤t+x≤x+x^3   ⇒for x>0  (1/(x+x^3 ))≤(1/(t+x)) ≤(1/(x^2 +x)) ⇒ (1/(x+x^3 )) ≤∣((sint)/(t+x))∣≤(1/(x^2  +x)) but  ∣F(x)∣≤∫_x^2  ^x^3  ∣((sint)/(t+x))∣dt →0  (x→+∞) because lim_(x→+∞)  (1/(x+x^3 )) =lim_(x→+∞) (1/(x^2 +x)) =0
1)c]x2,x3[wichverifyx2x3sintt+xdt=sincx2x3dtt+x=sinc[lnt+x]t=x2t=x3=sinc{lnx3+xlnx2+x}=lnclnx2+1x+1limx0F(x)=limc0×limx0lnx2+1x+1=0wehavex2tx3x2+xt+xx+x3forx>01x+x31t+x1x2+x1x+x3⩽∣sintt+x∣⩽1x2+xbutF(x)∣⩽x2x3sintt+xdt0(x+)becauselimx+1x+x3=limx+1x2+x=0

Leave a Reply

Your email address will not be published. Required fields are marked *