Menu Close

Let-f-x-x-3-3x-b-and-g-x-x-2-bx-3-where-b-is-a-real-number-What-is-the-sum-of-all-possible-values-of-b-for-which-the-equations-f-x-0-and-g-x-0-have-a-common-root-




Question Number 19698 by Tinkutara last updated on 14/Aug/17
Let f(x) = x^3  − 3x + b and g(x) = x^2  +  bx − 3, where b is a real number. What  is the sum of all possible values of b for  which the equations f(x) = 0 and g(x)  = 0 have a common root?
Letf(x)=x33x+bandg(x)=x2+bx3,wherebisarealnumber.Whatisthesumofallpossiblevaluesofbforwhichtheequationsf(x)=0andg(x)=0haveacommonroot?
Answered by ajfour last updated on 14/Aug/17
let α be the common root.         f(α)= α^3 −3α+b=0  and   αg(α)= α(α^2 +αb−3)=0  subtracting the two we get:  α^2 b+3α−3α−b=0  ⇒   α^2 =1   or    α=±1     as  α^2 +αb−3=0   for α=1,   1+b−3=0  ⇒ b=2  for α=−1,  1−b−3=0  ⇒ b=−2    Σb_i =0 .
letαbethecommonroot.f(α)=α33α+b=0andαg(α)=α(α2+αb3)=0subtractingthetwoweget:α2b+3α3αb=0α2=1orα=±1asα2+αb3=0forα=1,1+b3=0b=2forα=1,1b3=0b=2Σbi=0.
Commented by Tinkutara last updated on 15/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *