let-f-x-x-3-cos-2x-calculate-f-n-x-and-f-n-0- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 90960 by mathmax by abdo last updated on 27/Apr/20 letf(x)=x3cos(2x)calculatef(n)(x)andf(n)(0) Commented by mathmax by abdo last updated on 27/Apr/20 leibnizgivef(n)(x)=∑k=0nCnk(x3)(k)(cos(2x))(n−k)firstletfind(cos(2x))(p)(cos(2x))(1)=−2sin(2x)=2cos(2x+π2)(cos(2x))(2)=4cos(2x+2π2)letsuppose(cos(2x))(p)=2pcos(2x+pπ2)⇒(cos(2x))(p+1)=−2p+1sin(2x+pπ2)=2p+1cos(2x+(p+1)π2)⇒f(n)(x)=Cn0x32ncos(2x+nπ2)+Cn13x22n−1cos(2x+(n−1)π2)+Cn2(6x)2n−2cos(2x+(n−2)π2)+Cn362n−3cos(2x+(n−3)π2)f(n)(x)=2nx3cos(2x+nπ2)+3n2n−1x2cos(2x+(n−1)π2)+3n(n−1)2n−2xcos(2x+(n−2)π2)+n(n−1)(n−2)2n−3cos(2x+(n−3)π2) Commented by mathmax by abdo last updated on 27/Apr/20 f(n)(0)=n(n−1)(n−2)2n−3cos((n−3)π2) Answered by MWSuSon last updated on 27/Apr/20 f(n)(x)=[2ncos(2x+nπ2)x3+n2n−1cos(2x+(n−1)π2)3x2+n(n−1)2n−2cos(2x+(n−2)π2)6x2+n(n−1)(n−2)2n−3cos(2x+(n−3)π2)66.f(n)(0)=[n(n−1)(n−2)2n−3cos((n−3)π2)] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-z-3-zsin-z-2-calculate-Res-f-0-Next Next post: solve-1-x-2-y-xy-1-x-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.