Question Number 40407 by prof Abdo imad last updated on 21/Jul/18
$${let}\:{f}\left({x}\right)=\:{x}^{\mathrm{3}} −{x}−\mathrm{1} \\ $$$$\left.\mathrm{1}\left.\right)\:{prove}\:{that}\:\exists\:\alpha\:\in\:\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$$\left.\mathrm{2}\right)\:{use}\:{the}\:{newton}\:{method}\:\:{with}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${to}\:{find}\:{a}\:{better}\:{value}\:{for}\:\alpha\:\left({take}\:{onlly}\:\mathrm{5}\:{terms}\right) \\ $$
Answered by maxmathsup by imad last updated on 25/Jul/18
$$\left.\mathrm{1}\left.\right)\:{we}\:{have}\:{f}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\:>\mathrm{0}\:{on}\:{interval}\:\right]\mathrm{1},\mathrm{2}\left[\:{so}\:{is}\:{increasing}\:{on}\:\right]\mathrm{1},\mathrm{2}\left[\right. \\ $$$$\left.{f}\left(\mathrm{1}\right)=\mathrm{1}−\mathrm{1}−\mathrm{1}=−\mathrm{1}\:{and}\:{f}\left(\mathrm{2}\right)=\mathrm{8}−\mathrm{3}=\mathrm{5}\:\Rightarrow{f}\left(\mathrm{1}\right).{f}\left(\mathrm{2}\right)<\mathrm{0}\:\:\Rightarrow\exists\:!\:\alpha\:\in\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$$\left.\mathrm{2}\right)\:{we}\:{have}\:{x}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{2}}\:{and}\:{x}_{{n}+\mathrm{1}} \:={x}_{{n}} \:−\frac{{f}\left({x}_{{n}} \right)}{{f}^{'} \left({x}_{{n}} \right)}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} ={x}_{\mathrm{0}} \:−\frac{{f}\left({x}_{{o}} \right)}{{f}^{'} \left({x}_{\mathrm{0}} \right)}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{{f}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{{f}^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\:\:{but}\:{f}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} \:−\frac{\mathrm{3}}{\mathrm{2}}\:−\mathrm{1}\:=\frac{\mathrm{27}}{\mathrm{8}}\:−\frac{\mathrm{5}}{\mathrm{2}}\:=\frac{\mathrm{27}−\mathrm{20}}{\mathrm{8}}=\frac{\mathrm{7}}{\mathrm{8}} \\ $$$${f}^{'} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}} \:−\mathrm{1}\:=\frac{\mathrm{27}}{\mathrm{4}}\:−\mathrm{1}\:=\:\frac{\mathrm{23}}{\mathrm{4}}\:\Rightarrow \\ $$$${x}_{\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\frac{\mathrm{7}}{\mathrm{8}}}{\frac{\mathrm{23}}{\mathrm{4}}}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{7}}{\mathrm{8}}\:.\frac{\mathrm{4}}{\mathrm{23}}\:=\frac{\mathrm{3}}{\mathrm{2}}\:−\frac{\mathrm{7}}{\mathrm{46}}\:=\frac{\mathrm{138}−\mathrm{14}}{\mathrm{92}}\:=\frac{\mathrm{124}}{\mathrm{92}}\:\:=\frac{\mathrm{62}}{\mathrm{46}}\:=\frac{\mathrm{31}}{\mathrm{23}} \\ $$$${x}_{\mathrm{2}} ={x}_{\mathrm{1}} \:−\frac{{f}\left({x}_{\mathrm{1}} \right)}{{f}^{'} \left({x}_{\mathrm{1}} \right)}\:=\frac{\mathrm{31}}{\mathrm{23}}\:−\frac{{f}\left(\frac{\mathrm{31}}{\mathrm{23}}\right)}{{f}^{'} \left(\frac{\mathrm{31}}{\mathrm{23}}\right)}\:\:\:…..{be}\:{continued}… \\ $$