Menu Close

let-f-x-x-3-x-3-1-prove-that-f-have-one-root-real-0-and-0-1-2-2-factorize-f-x-inside-R-x-and-C-x-3-find-dx-f-x-




Question Number 104771 by mathmax by abdo last updated on 23/Jul/20
let f(x) =x^3  +x−3  1) prove that f have one root real α_0    and α_0  ∈ ]1,2[  2) factorize f(x) inside R[x] and C[x]  3 ) find ∫ (dx/(f(x)))
letf(x)=x3+x31)provethatfhaveonerootrealα0andα0]1,2[2)factorizef(x)insideR[x]andC[x]3)finddxf(x)
Answered by abdomathmax last updated on 24/Jul/20
1) f continue and f^′ (x)=3x^2  +1>0 ⇒f is increazing  we have f(1) =−1 and f(2) =8+2−3 =7  ⇒  f(1).f(2)<0 ⇒∃α_0  ∈]1,2[ unique /f(α_0 )=0  2)f(x) =(x−α_0 )(x^2  +ax +b) ⇒  x^3  +ax^2  +bx−α_0 x^2 −α_o a x−bα_0  =x^3  +x−3 ⇒  (a−α_0 )x^2  +(b−α_o a)x −bα_0 =x−3 ⇒   { ((a−α_0 =0)),((b−α_0 a =1    and −bα_0  =−3 ⇒)) :}  a =α_0  and b =(3/α_0 )  f(x) =(x−α_0 )(x^2 +α_0 x +(3/α_0 )) this is tbe factoruzation  at R[x]  x^2  +α_0 x +(3/α_0 ) =0 →Δ =α_0 ^2 −((12)/α_0 ) =((α_0 ^3 −12)/α_0 )  =((−α_o  +3−12)/α_0 ) =−((α_0 +9)/α_0 ) ⇒z_1 =−α_0  +i(√((α_0 +9)/α_0 ))  z_2 =−α_0 −i(√((α_0  +9)/α_0 ))  and f(x) =(x−α_0 )(x−z_1 )(x−z_2 )  =(x−α_0 )(x+α_0 −i(√((α_0  +9)/α_0 )))(x+α_0  +i(√((α_0  +9)/α_0 )))
1)fcontinueandf(x)=3x2+1>0fisincreazingwehavef(1)=1andf(2)=8+23=7f(1).f(2)<0α0]1,2[unique/f(α0)=02)f(x)=(xα0)(x2+ax+b)x3+ax2+bxα0x2αoaxbα0=x3+x3(aα0)x2+(bαoa)xbα0=x3{aα0=0bα0a=1andbα0=3a=α0andb=3α0f(x)=(xα0)(x2+α0x+3α0)thisistbefactoruzationatR[x]x2+α0x+3α0=0Δ=α0212α0=α0312α0=αo+312α0=α0+9α0z1=α0+iα0+9α0z2=α0iα0+9α0andf(x)=(xα0)(xz1)(xz2)=(xα0)(x+α0iα0+9α0)(x+α0+iα0+9α0)

Leave a Reply

Your email address will not be published. Required fields are marked *