Menu Close

let-f-x-x-4-x-2-and-g-x-2-x-3-2-x-3-1-find-D-f-D-g-and-D-fog-and-determine-fog-x-2-calculate-gof-x-and-give-D-gof-3-calculate-1-2-1-2-f-x-d




Question Number 59188 by maxmathsup by imad last updated on 05/May/19
let f(x)=x−(√(4−x^2 ))  and g(x) =((2 +(√(x−3)))/(2−(√(x−3))))  1) find   D_f   ,D_g    and D_(fog)      and  determine fog(x)  2) calculate gof(x) and give D_(gof)   3) calculate ∫_(−(1/2)) ^(1/2) f(x)dx      4) calculate  ∫_4 ^5  g(x)dx .
letf(x)=x4x2andg(x)=2+x32x31)findDf,DgandDfoganddeterminefog(x)2)calculategof(x)andgiveDgof3)calculate1212f(x)dx4)calculate45g(x)dx.
Commented by maxmathsup by imad last updated on 06/May/19
1) x∈D_f ⇔4−x^2 ≥0 ⇔x^2 ≤4 ⇔∣x∣≤2 ⇔−2≤x≤2 ⇒D_f =[−2,2]  x∈D_g  ⇔x−3≥0 and 2−(√(x−3))≠0 ⇔x≥3 and (√(x−3))≠2 ⇔x≥3 and x≠7 ⇒  D_g =[3,7[∪]7,+∞ [  x∈fog ⇔ x∈D_g and g(x)∈ D_f  ⇔ x≥3 and x≠7  and   −2≤g(x)≤2  but  −2≤g(x)≤2 ⇒ 4−g^2 (x)≥0 ⇒4−(((2+(√(x−3)))/(2−(√(x−3)))))^2  ≥0 ⇒  ((4(2−(√(x−3)))^2 −(2+(√(x−3)))^2 )/((2−(√(x−3)))^2 )) ≥0 ⇒4(4−4(√(x−3))+x−3)−(4+4(√(x−3))+x−3)≥0  ⇒16−16(√(x−3))+4x−12 −4−4(√(x−3))−x+3 ≥0 ⇒  −20(√(x−3)) +3x +3 ≥0 ⇒3x+3 ≥20(√(x−3)) ⇒(3x+3)^2 ≥400(x−3) ⇒  9(x^2 +2x+1)≥400x−1200 ⇒  9x^2 +18x−400x +9 +1200 ≥0 ⇒9x^2  −382x +1209 ≥0  Δ^′  =(191)^2 −9.1209 =....
1)xDf4x20x24⇔∣x∣⩽22x2Df=[2,2]xDgx30and2x30x3andx32x3andx7Dg=[3,7[]7,+[xfogxDgandg(x)Dfx3andx7and2g(x)2but2g(x)24g2(x)04(2+x32x3)204(2x3)2(2+x3)2(2x3)204(44x3+x3)(4+4x3+x3)01616x3+4x1244x3x+3020x3+3x+303x+320x3(3x+3)2400(x3)9(x2+2x+1)400x12009x2+18x400x+9+120009x2382x+12090Δ=(191)29.1209=.
Commented by maxmathsup by imad last updated on 06/May/19
fog(x) =f(g(x)) =g(x)−(√(4−(g(x))^2 ))=((2+(√(x−3)))/(2−(√(x−3)))) −(√(4−(((2+(√(x−3)))/(2−(√(x−3)))))^2 ))  2) gof(x) =g(f(x)) =((2+(√(f(x)−3)))/(2−(√(f(x)−3)))) =((2−(√(x−(√(4−x^2 ))−3)))/(2−(√(x−(√(4−x^2 ))−3))))  x∈D_(g0f)  ⇔ x−3−(√(4−x^2 ))≥0 and 4−x^2 ≥0 and (√(x−3−(√(4−x^2 ))))≠2 ⇒  but  4−x^2 ≥0 ⇒−2≤x≤2  x−3−(√(4−x^2 ))≥0 ⇒x−3≥(√(4−x^2 ))   we must have x≥3 but  x∈[−2,2]  condition impossible  so gof is not defined ...!
fog(x)=f(g(x))=g(x)4(g(x))2=2+x32x34(2+x32x3)22)gof(x)=g(f(x))=2+f(x)32f(x)3=2x4x232x4x23xDg0fx34x20and4x20andx34x22but4x202x2x34x20x34x2wemusthavex3butx[2,2]conditionimpossiblesogofisnotdefined!
Commented by maxmathsup by imad last updated on 06/May/19
3) ∫_(−(1/2)) ^(1/2) f(x)dx =∫_(−(1/2)) ^(1/2) (x−(√(4−x^2 )))dx =∫_(−(1/2)) ^(1/2)  xdx −2∫_0 ^(1/2) (√(4−x^2 ))dx  =0−2∫_0 ^(1/2) (√(4−x^2 ))dx =_(x=2sint)     −2 ∫_0 ^(arcsin((1/4))) 2(√(1−sin^2 t))(2cost)dt  =−8 ∫_0 ^(arcsin((1/4))) cos^2 t dt =−4 ∫_0 ^(arcsin((1/4)))  (1+cos(2t))dt  =−4 arcsin((1/4)) −2 [sin(2t)]_0 ^(arcsin((1/4)))   =−4 arcsin((1/4))−2{ sin(2arsin((1/4))}  but   sin(2arcsin((1/4)))=2sin(arcsin((1/4)))(√(1−sin^2 (arsin((1/4)))))  =(1/2)(√(1−((1/4))^2 ))=(1/2)(√(1−(1/(16))))=(1/2) ((√(15))/4) =((√(15))/8) ⇒  ∫_(−(1/2)) ^(1/2) f(x)dx =−4 arcsin((1/4))−((√(15))/4)
3)1212f(x)dx=1212(x4x2)dx=1212xdx20124x2dx=020124x2dx=x=2sint20arcsin(14)21sin2t(2cost)dt=80arcsin(14)cos2tdt=40arcsin(14)(1+cos(2t))dt=4arcsin(14)2[sin(2t)]0arcsin(14)=4arcsin(14)2{sin(2arsin(14)}butsin(2arcsin(14))=2sin(arcsin(14))1sin2(arsin(14))=121(14)2=121116=12154=1581212f(x)dx=4arcsin(14)154
Commented by maxmathsup by imad last updated on 06/May/19
4) ∫_4 ^5 g(x)dx =∫_4 ^5  ((2+(√(x−3)))/(2−(√(x−3)))) dx =_((√(x−3))=t)    ∫_1 ^(√2)   ((2+t)/(2−t))(2t)dt  =2 ∫_1 ^(√2)   ((t^2 +2t)/(2−t)) dt =−2 ∫_1 ^(√2)    ((t^2  +2t)/(t−2)) dt =−2∫_1 ^(√2)   ((t^2 −4 +4+2t)/(t−2))  =−2∫_1 ^(√2) (  t+2  +((2t+4)/(t−2)))dt =−2 ∫_1 ^(√2) (t+2)dt  −4 ∫_1 ^(√2)   ((t+2)/(t−2)) dt but  ∫_1 ^(√2) (t+2)dt =[(t^2 /2) +2t]_1 ^(√2)  =1+2(√2)−(1/2) −2 =2(√2)−(3/2)  ∫_1 ^(√2) ((t+2)/(t−2)) dt =∫_1 ^(√2)   ((t−2+4)/(t−2)) dt =(√2)−1 +4[ln∣t−2∣]_1 ^(√2) =(√2)−1 +4(ln(2−(√2)) ⇒  ∫_4 ^5 g(x)dx =−4(√2) +3 −4(√2) +4−16ln(2−(√2))=−8(√2) +7−16ln(2−(√2)) .
4)45g(x)dx=452+x32x3dx=x3=t122+t2t(2t)dt=212t2+2t2tdt=212t2+2tt2dt=212t24+4+2tt2=212(t+2+2t+4t2)dt=212(t+2)dt412t+2t2dtbut12(t+2)dt=[t22+2t]12=1+22122=223212t+2t2dt=12t2+4t2dt=21+4[lnt2]12=21+4(ln(22)45g(x)dx=42+342+416ln(22)=82+716ln(22).
Answered by Forkum Michael Choungong last updated on 05/May/19
for 1)  1) f(x)= x−(√(4−x^2 )) and g(x) =((2+(√(x−3)))/(2−(√(x−3))))  let f(x)=0  x−(√(4−x^2 ))=0  (√(4−x^2 ))=x  4−x^2 =x^2   4=2x^2   x=(√2)  D_(f ) = { x:x ∈ R , x≠(√2)}
for1)1)f(x)=x4x2andg(x)=2+x32x3letf(x)=0x4x2=04x2=x4x2=x24=2x2x=2Df={x:xR,x2}
Commented by Mr X pcx last updated on 06/May/19
not correct sir...
notcorrectsir
Answered by MJS last updated on 06/May/19
D_f ={x∈R ∣ −2≤x≤2}; R_f ={y∈R ∣ −2(√2)≤y≤2}  D_g ={x∈R ∣ x≥3∧x≠7}; R_g ={y∈R ∣ ∣y∣≥1}  f(g(x)) is defined for −2≤g(x)≤2 ⇒  ⇒ D_(f(g(x))) ={x∈R ∣ 3≤x≤((31)/9) ∨ x≥39}  g(f(x)) is defined for f(x)≥3∧f(x)≠7 ⇒  ⇒ D_(g(f(x))) ={}
Df={xR2x2};Rf={yR22y2}Dg={xRx3x7};Rg={yRy∣⩾1}f(g(x))isdefinedfor2g(x)2Df(g(x))={xR3x319x39}g(f(x))isdefinedforf(x)3f(x)7Dg(f(x))={}

Leave a Reply

Your email address will not be published. Required fields are marked *