Question Number 59188 by maxmathsup by imad last updated on 05/May/19

Commented by maxmathsup by imad last updated on 06/May/19
![1) x∈D_f ⇔4−x^2 ≥0 ⇔x^2 ≤4 ⇔∣x∣≤2 ⇔−2≤x≤2 ⇒D_f =[−2,2] x∈D_g ⇔x−3≥0 and 2−(√(x−3))≠0 ⇔x≥3 and (√(x−3))≠2 ⇔x≥3 and x≠7 ⇒ D_g =[3,7[∪]7,+∞ [ x∈fog ⇔ x∈D_g and g(x)∈ D_f ⇔ x≥3 and x≠7 and −2≤g(x)≤2 but −2≤g(x)≤2 ⇒ 4−g^2 (x)≥0 ⇒4−(((2+(√(x−3)))/(2−(√(x−3)))))^2 ≥0 ⇒ ((4(2−(√(x−3)))^2 −(2+(√(x−3)))^2 )/((2−(√(x−3)))^2 )) ≥0 ⇒4(4−4(√(x−3))+x−3)−(4+4(√(x−3))+x−3)≥0 ⇒16−16(√(x−3))+4x−12 −4−4(√(x−3))−x+3 ≥0 ⇒ −20(√(x−3)) +3x +3 ≥0 ⇒3x+3 ≥20(√(x−3)) ⇒(3x+3)^2 ≥400(x−3) ⇒ 9(x^2 +2x+1)≥400x−1200 ⇒ 9x^2 +18x−400x +9 +1200 ≥0 ⇒9x^2 −382x +1209 ≥0 Δ^′ =(191)^2 −9.1209 =....](https://www.tinkutara.com/question/Q59229.png)
Commented by maxmathsup by imad last updated on 06/May/19
![fog(x) =f(g(x)) =g(x)−(√(4−(g(x))^2 ))=((2+(√(x−3)))/(2−(√(x−3)))) −(√(4−(((2+(√(x−3)))/(2−(√(x−3)))))^2 )) 2) gof(x) =g(f(x)) =((2+(√(f(x)−3)))/(2−(√(f(x)−3)))) =((2−(√(x−(√(4−x^2 ))−3)))/(2−(√(x−(√(4−x^2 ))−3)))) x∈D_(g0f) ⇔ x−3−(√(4−x^2 ))≥0 and 4−x^2 ≥0 and (√(x−3−(√(4−x^2 ))))≠2 ⇒ but 4−x^2 ≥0 ⇒−2≤x≤2 x−3−(√(4−x^2 ))≥0 ⇒x−3≥(√(4−x^2 )) we must have x≥3 but x∈[−2,2] condition impossible so gof is not defined ...!](https://www.tinkutara.com/question/Q59231.png)
Commented by maxmathsup by imad last updated on 06/May/19
![3) ∫_(−(1/2)) ^(1/2) f(x)dx =∫_(−(1/2)) ^(1/2) (x−(√(4−x^2 )))dx =∫_(−(1/2)) ^(1/2) xdx −2∫_0 ^(1/2) (√(4−x^2 ))dx =0−2∫_0 ^(1/2) (√(4−x^2 ))dx =_(x=2sint) −2 ∫_0 ^(arcsin((1/4))) 2(√(1−sin^2 t))(2cost)dt =−8 ∫_0 ^(arcsin((1/4))) cos^2 t dt =−4 ∫_0 ^(arcsin((1/4))) (1+cos(2t))dt =−4 arcsin((1/4)) −2 [sin(2t)]_0 ^(arcsin((1/4))) =−4 arcsin((1/4))−2{ sin(2arsin((1/4))} but sin(2arcsin((1/4)))=2sin(arcsin((1/4)))(√(1−sin^2 (arsin((1/4))))) =(1/2)(√(1−((1/4))^2 ))=(1/2)(√(1−(1/(16))))=(1/2) ((√(15))/4) =((√(15))/8) ⇒ ∫_(−(1/2)) ^(1/2) f(x)dx =−4 arcsin((1/4))−((√(15))/4)](https://www.tinkutara.com/question/Q59232.png)
Commented by maxmathsup by imad last updated on 06/May/19
![4) ∫_4 ^5 g(x)dx =∫_4 ^5 ((2+(√(x−3)))/(2−(√(x−3)))) dx =_((√(x−3))=t) ∫_1 ^(√2) ((2+t)/(2−t))(2t)dt =2 ∫_1 ^(√2) ((t^2 +2t)/(2−t)) dt =−2 ∫_1 ^(√2) ((t^2 +2t)/(t−2)) dt =−2∫_1 ^(√2) ((t^2 −4 +4+2t)/(t−2)) =−2∫_1 ^(√2) ( t+2 +((2t+4)/(t−2)))dt =−2 ∫_1 ^(√2) (t+2)dt −4 ∫_1 ^(√2) ((t+2)/(t−2)) dt but ∫_1 ^(√2) (t+2)dt =[(t^2 /2) +2t]_1 ^(√2) =1+2(√2)−(1/2) −2 =2(√2)−(3/2) ∫_1 ^(√2) ((t+2)/(t−2)) dt =∫_1 ^(√2) ((t−2+4)/(t−2)) dt =(√2)−1 +4[ln∣t−2∣]_1 ^(√2) =(√2)−1 +4(ln(2−(√2)) ⇒ ∫_4 ^5 g(x)dx =−4(√2) +3 −4(√2) +4−16ln(2−(√2))=−8(√2) +7−16ln(2−(√2)) .](https://www.tinkutara.com/question/Q59233.png)
Answered by Forkum Michael Choungong last updated on 05/May/19

Commented by Mr X pcx last updated on 06/May/19

Answered by MJS last updated on 06/May/19
