Menu Close

let-f-x-x-7-arctan-2x-1-calculate-f-4-0-and-f-7-0-2-calculate-f-5-1-




Question Number 130534 by mathmax by abdo last updated on 26/Jan/21
let f(x)=x^7  arctan(2x)  1)calculate  f^((4)) (0) and f^((7)) (0)  2) calculate f^((5)) (1)
letf(x)=x7arctan(2x)1)calculatef(4)(0)andf(7)(0)2)calculatef(5)(1)
Answered by mathmax by abdo last updated on 30/Jan/21
f(x)=x^7  arctan(2x) ⇒f^((n)) (x)=Σ_(k=0) ^n  C_n ^k (x^7 )^((k))  (arctan(2x))^((n−k))   =x^7  (arctan(2x))^((n))  +C_n ^1 7x^6 (arctan(2x))^((n−1))  +7.6C_n ^2 x^5 (arctan(2x))^((n−2))   +7.6.5 C_n ^3  x^4 (arctan(2x))^((n−3))  +7.6.5.4 C_n ^4  x^3 (arctan(2x))^((n−4))   +7.6.5.4.3 C_n ^5  x^2 (arctan(2x))^((n−5))  +7.6.5.4.3.2C_n ^6 x(arctan(2x))^((n−6))   +7.6.5.4.3.2.1 C_n ^7  (arctan(2x))^((n−7))   we have (arctan(2x))^((1))  =(2/(1+4x^2 )) =(2/(4(x^2 +(1/4))))  =(1/(2(x−(i/2))(x+(i/2)))) =(1/(2×((2i)/2)))((1/(x−(i/2)))−(1/(x+(i/2))))=(1/(2i))((1/(x−(i/2)))−(1/(x+(i/2)))) ⇒  (arctan(2x)^((m))  =(1/(2i)){ (((−1)^(m−1) (m−1)!)/((x−(i/2))^m ))−(((−1)^(m−1) (m−1)!)/((x+(i/2))^m ))}  =(((−1)^(m−1) (m−1)!)/(2i)){((2iIm(x+(i/2))^m )/((x^2  +(1/4))^m ))}  =(−1)^(m−1) (m−1)!×((Im(x+(i/2))^m )/((x^2  +(1/4))^m ))....be continued...
f(x)=x7arctan(2x)f(n)(x)=k=0nCnk(x7)(k)(arctan(2x))(nk)=x7(arctan(2x))(n)+Cn17x6(arctan(2x))(n1)+7.6Cn2x5(arctan(2x))(n2)+7.6.5Cn3x4(arctan(2x))(n3)+7.6.5.4Cn4x3(arctan(2x))(n4)+7.6.5.4.3Cn5x2(arctan(2x))(n5)+7.6.5.4.3.2Cn6x(arctan(2x))(n6)+7.6.5.4.3.2.1Cn7(arctan(2x))(n7)wehave(arctan(2x))(1)=21+4x2=24(x2+14)=12(xi2)(x+i2)=12×2i2(1xi21x+i2)=12i(1xi21x+i2)(arctan(2x)(m)=12i{(1)m1(m1)!(xi2)m(1)m1(m1)!(x+i2)m}=(1)m1(m1)!2i{2iIm(x+i2)m(x2+14)m}=(1)m1(m1)!×Im(x+i2)m(x2+14)m.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *