Menu Close

let-f-x-x-e-t-t-dt-1-calculate-f-x-2-find-a-equivalent-of-f-x-when-x-




Question Number 44318 by abdo.msup.com last updated on 26/Sep/18
let f(x)=∫_x ^(+∞)  (e^(−t) /t)dt  1)calculate f^′ (x)  2)find a equivalent of f(x) when  x→+∞.
letf(x)=x+ettdt1)calculatef(x)2)findaequivalentoff(x)whenx+.
Commented by tanmay.chaudhury50@gmail.com last updated on 27/Sep/18
Commented by maxmathsup by imad last updated on 27/Sep/18
we have f(x) = ∫_x ^1  (e^(−t) /t)dt  +∫_1 ^(+∞)    (e^(−t) /t)dt =∫_1 ^(+∞)  (e^(−t) /t)dt−∫_1 ^x   (e^(−t) /t)dt ⇒  f^′ (x)= −(e^(−x) /x)  (x>0)  2) let integrate by parts   f(x) =[ −(e^(−t) /t)]_x ^(+∞)  −∫_x ^(+∞)  (e^(−t) /t^2 ) dt = (e^(−x) /x) − ∫_x ^(+∞)   (e^(−t) /t^2 )dt ⇒  ∣f(x)−(e^(−x) /x)∣ =∣ ∫_x ^(+∞)   (e^(−t) /t^2 )dt∣ ≤ ∫_x ^(+∞)   (dt/t^2 ) =[−(1/t)]_x ^(+∞) =(1/x) →0(x→+∞) ⇒  f(x)∼ (e^(−x) /x)  (x→+∞).
wehavef(x)=x1ettdt+1+ettdt=1+ettdt1xettdtf(x)=exx(x>0)2)letintegratebypartsf(x)=[ett]x+x+ett2dt=exxx+ett2dtf(x)exx=∣x+ett2dtx+dtt2=[1t]x+=1x0(x+)f(x)exx(x+).
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Sep/18
((df(x))/dx)=−(e^(−x) /x)×(dx/dx)  f^′ (x)=−(e^(−x) /x)
df(x)dx=exx×dxdxf(x)=exx

Leave a Reply

Your email address will not be published. Required fields are marked *