Menu Close

let-f-x-x-n-1-e-x-determine-f-n-x-with-n-integr-natural-




Question Number 52673 by maxmathsup by imad last updated on 11/Jan/19
let f(x)=(x^n −1)e^x    determine f^((n)) (x)   with n integr natural
letf(x)=(xn1)exdeterminef(n)(x)withnintegrnatural
Commented by maxmathsup by imad last updated on 13/Jan/19
f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (x^n −1)^((k))  (e^x )^((n−k))    (leibniz formulae)  =Σ_(k=0) ^n  C_n ^k  (x^n −1)^((k)) e^x   =(x^n −1)e^x  +e^x Σ_(k=1) ^n  C_n ^k  (x^n )^k     but we have  (x^n )^((1)) =nx^(n−1)   ,(x^n )^((2)) =n(n−1)x^(n−2) ....(x^n )^((k)) =n(n−1)...(n−k+1)x^(n−k)   =((n!)/((n−k)!)) x^(n−k)  ⇒f^((n)) (x)=(x^n −1)e^x  +e^x  Σ_(k=1) ^n   ((n!)/(k!(n−k)!)) ((n!)/((n−k)!)) x^(n−k)   ⇒  f^((n)) (x)=(x^n −1)e^x  +e^x  Σ_(k=1) ^n   (((n!)^2 )/(k!(n−k)!^2 )) x^(n−k)   .
f(n)(x)=k=0nCnk(xn1)(k)(ex)(nk)(leibnizformulae)=k=0nCnk(xn1)(k)ex=(xn1)ex+exk=1nCnk(xn)kbutwehave(xn)(1)=nxn1,(xn)(2)=n(n1)xn2.(xn)(k)=n(n1)(nk+1)xnk=n!(nk)!xnkf(n)(x)=(xn1)ex+exk=1nn!k!(nk)!n!(nk)!xnkf(n)(x)=(xn1)ex+exk=1n(n!)2k!(nk)!2xnk.
Answered by Smail last updated on 11/Jan/19
f′(x)=(nx^(n−1) +x^n −1)e^x   f′′(x)=(n(n−1)x^(n−2) +2nx^(n−1) +x^n −1)e^x   f^((3)) (x)=(n(n−1)(n−2)x^(n−3) +3n(n−1)x^(n−2) +3nx^(n−1) )e^x +f(x)  f^((4)) (x)=(n→(n−3)x^(n−4) +4n→(n−2)x^(n−3) +6n(n−1)x^(n−2) +4nx^(n−1) )e^x +f(x)  f^((n)) (x)=(P_(n−0) ^n C_0 ^n x^0 +P_(n−1) ^n C_1 ^n x^1 +P_(n−2) ^n C_2 ^n x^2 +...+P_0 ^n C_n ^n x^n −1)e^x   f^((n)) (x)=e^x (Σ_(k=0) ^n P_(n−k) ^n C_k ^n x^k −1)
f(x)=(nxn1+xn1)exf(x)=(n(n1)xn2+2nxn1+xn1)exf(3)(x)=(n(n1)(n2)xn3+3n(n1)xn2+3nxn1)ex+f(x)f(4)(x)=(n(n3)xn4+4n(n2)xn3+6n(n1)xn2+4nxn1)ex+f(x)f(n)(x)=(Pn0nC0nx0+Pn1nC1nx1+Pn2nC2nx2++P0nCnnxn1)exf(n)(x)=ex(nk=0PnknCknxk1)

Leave a Reply

Your email address will not be published. Required fields are marked *