Menu Close

let-f-x-x-n-e-2nx-with-n-integr-natural-calculate-f-n-0-




Question Number 40105 by maxmathsup by imad last updated on 15/Jul/18
let  f(x) = x^n  e^(−2nx)     with n integr natural   calculate f^((n)) (0).
letf(x)=xne2nxwithnintegrnaturalcalculatef(n)(0).
Commented by maxmathsup by imad last updated on 17/Jul/18
leibniz formula give  f^((p)) (x)=Σ_(k=0) ^p   C_p ^k   (x^n )^((k))  (e^(−2nx) )^((p−k))   but   (x^n )^((k))  = n(n−1)....(n−k+1) x^(n−k)   if k≤n and (x^n )^((k)) =0 if k>n ⇒  (x^n )^((k))   =((n!)/((n−k)!)) x^(n−k)    also we have {e^(−2n) }^((p−k)) =(−2n)^(p−k)  e^(−2nx)  ⇒  f^((p)) (x)=Σ_(k=0) ^p   C_p ^k      ((n!)/((n−k)!)) x^(n−k)   (−2n)^(p−k)  e^(−2nx)    let suppose n≤p  f^((p)) (x)= Σ_(k=0) ^(n−1)   C_p ^k   ((n!)/((n−k)!)) x^(n−k) (−2n)^(p−k)  e^(−2nx )  + C_p ^n    ((n!)/(0!))(−2n)^(p−n)  e^(−2nx)   +Σ_(k=n+1) ^p  C_p ^k     ((n!)/((n−k)!)) x^(n−k) (−2n)^(p−k)  e^(−2nx)  ⇒  f^((p)) (0) = C_p ^n n! (−2n)^(p−n)  ⇒ f^((n)) (0) =n! C_n ^n   =n!
leibnizformulagivef(p)(x)=k=0pCpk(xn)(k)(e2nx)(pk)but(xn)(k)=n(n1).(nk+1)xnkifknand(xn)(k)=0ifk>n(xn)(k)=n!(nk)!xnkalsowehave{e2n}(pk)=(2n)pke2nxf(p)(x)=k=0pCpkn!(nk)!xnk(2n)pke2nxletsupposenpf(p)(x)=k=0n1Cpkn!(nk)!xnk(2n)pke2nx+Cpnn!0!(2n)pne2nx+k=n+1pCpkn!(nk)!xnk(2n)pke2nxf(p)(0)=Cpnn!(2n)pnf(n)(0)=n!Cnn=n!

Leave a Reply

Your email address will not be published. Required fields are marked *