Menu Close

let-f-x-x-x-1-1-find-D-f-2-give-the-equation-of-assymtote-at-point-A-0-f-o-3-if-f-x-a-x-1-b-x-1-determine-a-andb-4-calculate-f-x-5-find-f-1-x-and-f-1-




Question Number 37892 by abdo mathsup 649 cc last updated on 19/Jun/18
let   f(x)=(√(x+(√(x+1))))  1) find  D_f   2)  give the equation of assymtote at point  A(0,f(o))  3) if f(x)∼ a(x−1)  +b  (x→1) determine a andb  4) calculate f^′ (x)  5) find  f^(−1) (x)  and  (f^(−1) )^′ (x)
letf(x)=x+x+11)findDf2)givetheequationofassymtoteatpointA(0,f(o))3)iff(x)a(x1)+b(x1)determineaandb4)calculatef(x)5)findf1(x)and(f1)(x)
Commented by prof Abdo imad last updated on 21/Jun/18
4)we have f^2 (x)=x +(√(x+1)) ⇒  2f(x)f^′ (x)= 1 +(1/(2(√(x+1)))) ⇒  2(√(x+(√(x+1)))) f^′ (x)= 1+(1/(2(√(x+1)))) ⇒   f^′ (x)= (1/(2(√(x+(√(x+1)))))){ 1+(1/(2(√(x+1))))}  5) let f(x)=y  ⇔ x=f^(−1) (y) ⇒  (√(x+(√(x+1))))=y  ⇒ x+(√(x+1))=y^2  ⇒  (√(x+1))=y^2 −x ⇒x+1=(y^2 −x)^2 =x+1 ⇒  x^2  −2y^2 x +y^4  −x−1=0 ⇒x^2  −(2y^2 +1)x +y^4 −1=0  Δ=(2y^2  +1)^2  −4(y^4 −1)  =4y^4  +4y^2  +1−4y^4  +4=4y^2  +5 >0  x_1 =((2y^2  +1 +(√(4y^2  +5)))/2)  x_2 = ((2y^2  +1 −(√(4y^2  +5)))/2)  but we must have  x+1≥0  and y^2 −x ≥0 after verification  we find that x=((2y^2  +1−(√(4y^2  +5)))/2) ⇒  f^(−1) (x)=((2x^2  +1 −(√(4x^2  +5)))/2)  so  (f^(−1) )^′ (x)= 2x −(1/2) ((8x)/(2(√(4x^2  +5))))  =2x −((4x)/( (√(4x^2  +5)))) .
4)wehavef2(x)=x+x+12f(x)f(x)=1+12x+12x+x+1f(x)=1+12x+1f(x)=12x+x+1{1+12x+1}5)letf(x)=yx=f1(y)x+x+1=yx+x+1=y2x+1=y2xx+1=(y2x)2=x+1x22y2x+y4x1=0x2(2y2+1)x+y41=0Δ=(2y2+1)24(y41)=4y4+4y2+14y4+4=4y2+5>0x1=2y2+1+4y2+52x2=2y2+14y2+52butwemusthavex+10andy2x0afterverificationwefindthatx=2y2+14y2+52f1(x)=2x2+14x2+52so(f1)(x)=2x128x24x2+5=2x4x4x2+5.
Commented by math khazana by abdo last updated on 21/Jun/18
1) x ∈ D_f  ⇔ x+1≥0 and x+(√(x+1))≥0 ⇒  x ≥−1 and x +(√(x+1))≥0  so if x ≥0 we get  x+(√(x+1)) >0  if −1≤x≤0  (√(x+1))  +x =(√(x+1)) −(−x) and  ((√(x+1)))^2  −(−x)^2 =x+1 −x^2   =−x^2  +x +1 ⇒Δ=1−4(−1)=5  x_1 =((−1+(√5))/2) andx_2 = ((−1−(√5))/2)  (√(x+1)) +x = ((x+1 −x^2 )/( (√(x+1))−x))   and (√(x+1)) −x>0 so  (√(1+x))+x ≥0 ⇔ x ∈[((−1−(√5))/2) , ((−1+(√5))/2)] but  [−1,0]⊂[((−1−(√5))/2),((−1+(√5))/2)] ⇒D_f =[−1,+∞[  2) y =f^′ (0)x +f(0)  but  f(x)=(√(x+(√(x+1)))) ⇒  f(0)=1 we have f^2 (x)=x +(√(x+1)) ⇒  2f(x)f^′ (x)=1+ (1/(2(√(x+1)))) ⇒2f(0)f^′ (0)= (3/2) ⇒  f^′ (0) =(3/4) so the equation of assymptote is  y= (3/4) x+1 .
1)xDfx+10andx+x+10x1andx+x+10soifx0wegetx+x+1>0if1x0x+1+x=x+1(x)and(x+1)2(x)2=x+1x2=x2+x+1Δ=14(1)=5x1=1+52andx2=152x+1+x=x+1x2x+1xandx+1x>0so1+x+x0x[152,1+52]but[1,0][152,1+52]Df=[1,+[2)y=f(0)x+f(0)butf(x)=x+x+1f(0)=1wehavef2(x)=x+x+12f(x)f(x)=1+12x+12f(0)f(0)=32f(0)=34sotheequationofassymptoteisy=34x+1.
Commented by math khazana by abdo last updated on 21/Jun/18
3) we have a=f^′ (1) and b=f(1)  b=(√(1+(√2)))  2f(1)f^′ (1)=1+ (1/(2(√2))) ⇒ f^′ (1)=(1/(2(√(1+(√2)))))(1+(1/(2(√2)))) =a
3)wehavea=f(1)andb=f(1)b=1+22f(1)f(1)=1+122f(1)=121+2(1+122)=a

Leave a Reply

Your email address will not be published. Required fields are marked *