Menu Close

let-f-x-x-x-2-x-1-developp-f-atintegr-serie-




Question Number 35052 by math khazana by abdo last updated on 14/May/18
let f(x) =  (x/(x^2  +x−1))  developp f atintegr serie
letf(x)=xx2+x1developpfatintegrserie
Commented by abdo mathsup 649 cc last updated on 16/May/18
let find the roots of x^2  +x−1  Δ=1−4(−1)=5 ⇒ x_1 = ((−1+(√5))/2)  and  x_2 =((−1−(√5))/2)  f(x)= (x/((x −x_1 )(x−x_2 ))) =(x/(x_2 −x_1 )){ (1/(x−x_2 )) −(1/(x−x_1 ))}  = (x/(x_2 −x_1 )){   ((−1)/(x_2 (1−(x/x_2 )))) + (1/(x_1 (1−(x/x_1 ))))} so  for  ∣x∣<inf( ∣x_1 ∣,∣x_2 ∣) we have  f(x)= (x/(−(√5))){ (1/x_1 ) Σ_(n=0) ^∞  ((x/x_1 ))^n   −(1/x_2 ) Σ_(n=0) ^∞  ((x/x_2 ))^n }  f(x)= (x/(x_2 (√5))) Σ_(n=0) ^∞    ((x/x_2 ))^n   −(x/(x_1 (√5))) Σ_(n=0) ^∞  ((x/x_1 ))^n  .
letfindtherootsofx2+x1Δ=14(1)=5x1=1+52andx2=152f(x)=x(xx1)(xx2)=xx2x1{1xx21xx1}=xx2x1{1x2(1xx2)+1x1(1xx1)}soforx∣<inf(x1,x2)wehavef(x)=x5{1x1n=0(xx1)n1x2n=0(xx2)n}f(x)=xx25n=0(xx2)nxx15n=0(xx1)n.

Leave a Reply

Your email address will not be published. Required fields are marked *