Menu Close

let-f-x-x-x-3-2x-1-1-find-D-f-2-find-f-n-x-then-f-n-0-3-developp-f-at-integr-serie-




Question Number 42689 by prof Abdo imad last updated on 31/Aug/18
let f(x) = (x/(x^3 −2x  +1))  1) find D_f   2) find f^((n)) (x)  then  f^((n)) (0)  3) developp f at integr serie.
letf(x)=xx32x+11)findDf2)findf(n)(x)thenf(n)(0)3)developpfatintegrserie.
Commented by maxmathsup by imad last updated on 01/Sep/18
1) x∈ D_f  ⇔ x^3 −2x +1 ≠0  but  x^3 −2x +1 =x^3 −1 −2x +2 =(x−1)(x^2  +x+1)−2(x−1)  =(x−1)(x^2  +x+1 −2) =(x−1)(x^2  +x−1)  roots of x^2  +x−1?  Δ=1−4(−1)=5 ⇒α =((−1+(√5))/2)    and β =((−1−(√5))/2)  ⇒  D_f =R−{1,((−1+(√5))/2) ,((−1−(√5))/2)}
1)xDfx32x+10butx32x+1=x312x+2=(x1)(x2+x+1)2(x1)=(x1)(x2+x+12)=(x1)(x2+x1)rootsofx2+x1?Δ=14(1)=5α=1+52andβ=152Df=R{1,1+52,152}
Commented by maxmathsup by imad last updated on 01/Sep/18
2) we have f(x)= (x/((x−1)(x−α)(x−β))) =(a/(x−1)) +(b/(x−α)) +(c/(x−β))  a =lim_(x→1) (x−1)f(x) =  (1/((1−α)(1−β)))  b =lim_(x→α) (x−α)f(x) = (α/((α−1)(α−β)))  c =lim_(x→β) (x−β)f(x) = (β/((β−1)(β−α)))  but α =((−1+(√5))/2) and β=((−1−(√5))/2) ⇒  a = (1/((1−((−1+(√5))/2))(1−((−1−(√5))/2)))) = (4/((3−(√5))(3+(√5)))) =(4/4) =1  b =  ((−1+(√5))/(2(1−((−1+(√5))/2))(−(√5))))  =((−1+(√5))/( (√5)(3−(√5)))) =((−1+(√5))/(3(√5)−5)) .  c =  ((−1−(√5))/(2(1−((−1−(√5))/2))((√5)))) =((−1−(√5))/( (√5)(3−(√5)))) =((−1−(√5))/(3(√5)−5)) ⇒  f(x)= (1/(x−1))  +(1/(3(√5)−5)){  ((−1+(√5))/(x−α)) −((1+(√5))/(x−β))} ⇒  f^((n)) (x) = (((−1)^n n!)/((x−1)^(n+1) ))  +  ((−1+(√5))/(3(√5)−5)) (((−1)^n n!)/((x−α)^(n+1) )) −((1+(√5))/(3(√5)−5)) (((−1)^n n!)/((x−β)^(n+1) ))   ⇒  f^((n)) (0) =−n!    +((−1+(√5))/(3(√5)−5))  (((−1)^n n!)/((−α)^(n+1) )) −((1+(√5))/(3(√5)−5)) (((−1)^n n!)/((−β)^(n+1) ))  =−n!  −((−1+(√5))/(3(√5)−5)) ((n!)/α^(n+1) ) +((1+(√5))/(3(√5)−5)) ((n!)/β^(n+1) ) ⇒  f^((n)) (0) =−n!  +((n!)/(3(√5)−5)){   ((1+(√5))/β^(n+1) ) +((1−(√5))/α^(n+1) )}
2)wehavef(x)=x(x1)(xα)(xβ)=ax1+bxα+cxβa=limx1(x1)f(x)=1(1α)(1β)b=limxα(xα)f(x)=α(α1)(αβ)c=limxβ(xβ)f(x)=β(β1)(βα)butα=1+52andβ=152a=1(11+52)(1152)=4(35)(3+5)=44=1b=1+52(11+52)(5)=1+55(35)=1+5355.c=152(1152)(5)=155(35)=15355f(x)=1x1+1355{1+5xα1+5xβ}f(n)(x)=(1)nn!(x1)n+1+1+5355(1)nn!(xα)n+11+5355(1)nn!(xβ)n+1f(n)(0)=n!+1+5355(1)nn!(α)n+11+5355(1)nn!(β)n+1=n!1+5355n!αn+1+1+5355n!βn+1f(n)(0)=n!+n!355{1+5βn+1+15αn+1}
Commented by maxmathsup by imad last updated on 01/Sep/18
3) we have f(x) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   ⇒  f(x) = Σ_(n=0) ^∞ {−1  + (1/(3(√5)−5))(   ((1+(√5))/β^(n+1) ) +((1−(√5))/α^(n+1) ))}x^n  .
3)wehavef(x)=n=0f(n)(0)n!xnf(x)=n=0{1+1355(1+5βn+1+15αn+1)}xn.

Leave a Reply

Your email address will not be published. Required fields are marked *