Menu Close

let-f-x-y-x-2-y-2-sin-1-x-2-y-2-if-x-y-0-0-and-f-0-0-0-prove-that-f-is-differenciable-at-all-point-of-R-2-2-prove-that-f-x-and-f-y-are-not-differdnciable-at-0-0-




Question Number 36176 by prof Abdo imad last updated on 30/May/18
let f(x,y) =(x^2  +y^2 )sin{ (1/( (√(x^2  +y^2 ))))} if(x,y)=(0,0)  and f(0,0)=0  prove that f is differenciable at all point of R^2   2) prove that (∂f/∂x) and (∂f/∂y) are not differdnciable  at (0,0)
$${let}\:{f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){sin}\left\{\:\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }}\right\}\:{if}\left({x},{y}\right)=\left(\mathrm{0},\mathrm{0}\right) \\ $$$${and}\:{f}\left(\mathrm{0},\mathrm{0}\right)=\mathrm{0} \\ $$$${prove}\:{that}\:{f}\:{is}\:{differenciable}\:{at}\:{all}\:{point}\:{of}\:{R}^{\mathrm{2}} \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:\frac{\partial{f}}{\partial{x}}\:{and}\:\frac{\partial{f}}{\partial{y}}\:{are}\:{not}\:{differdnciable} \\ $$$${at}\:\left(\mathrm{0},\mathrm{0}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *