Menu Close

let-f-x-y-x-y-x-y-1-calculate-D-f-x-y-dxdy-with-D-x-y-R-2-1-x-2-and-1-y-3-




Question Number 65401 by mathmax by abdo last updated on 29/Jul/19
let f(x,y)=(x+y)(√(x+y−1))  calculate  ∫∫_D f(x,y)dxdy with   D ={(x,y)∈R^2 /  1≤x≤2  and   1≤y≤(√3)}
letf(x,y)=(x+y)x+y1calculateDf(x,y)dxdywithD={(x,y)R2/1x2and1y3}
Commented by mathmax by abdo last updated on 01/Aug/19
∫∫_D f(x,y)dxdy =∫_1 ^(√3) (∫_1 ^2 (x+y)(√(x+y−1))dx)dy=∫_1 ^(√3) A(y)dy  changement (√(x+y−1))=t give x+y−1=t^2  ⇒x =t^2 −y+1 ⇒  A(y) =∫_(√y) ^(√(y+1)) (t^2 −y+1+y)t(2t)dt  =2 ∫_(√y) ^(√(y+1)) (t^4 +t^2 )dt =2[(t^5 /5)+(t^3 /3)]_(√y) ^(√(y+1))  =2{((((√(y+1)))^5 )/5)+((((√(y+1)))^3 )/3)  −((((√y))^5 )/5)−((((√y))^3 )/3) =2{ (((y+1)^2 (√(y+1)))/5) +(((y+1)(√(y+1)))/3)−((y^2 (√y))/5)−((y(√y))/3)} ⇒  ∫∫_D f(x,y)dxdy =(2/5)∫_1 ^(√3) (y+1)^2 (√(y+1)) dy +(2/3)∫_1 ^(√3) (y+1)(√(y+1))dy  −(2/5) ∫_1 ^(√3) y^2 (√y)dy  −(2/3) ∫_1 ^(√3) y(√y)dy   changement (√(y+1))=u give y+1 =u^2  ⇒  ∫_1 ^(√3) (y+1)^2 (√(y+1))dy =∫_(√2) ^(√((√3)+1)) u^4 u (2u)du =2 ∫_(√2) ^(√((√3)+1)) u^6 du   =(2/7)[u^7 ]_(√2) ^(√((√3)+1))  =(2/7){  ((√((√3)+1)))^7 −((√2))^7 }  ∫_1 ^(√3) (y+1)(√(y+1))dy =∫_(√2) ^(√((√3)+1)) u^2 u(2udu) =2 ∫_(√2) ^(√((√3)+1))   u^4 du  =(2/5){((√((√3)+1)))^5 −((√2))^5 }  also changement (√y)=u give y=u^2   ⇒∫_1 ^(√3) y^2 (√y)dy =∫_1 ^(√(√3)) u^4 (u)(2udu) =2 ∫_1 ^(√(√3)) u^6 du =(2/7)[((√(√3)))^7 −1)  ∫_1 ^(√3) y(√y)dy =∫_1 ^(√(√3))  u^2 u(2u)du =2 ∫_1 ^(√(√3)) u^4 xu =(2/5){ ((√(√3)))^5 −1}  the value of this integral is known
Df(x,y)dxdy=13(12(x+y)x+y1dx)dy=13A(y)dychangementx+y1=tgivex+y1=t2x=t2y+1A(y)=yy+1(t2y+1+y)t(2t)dt=2yy+1(t4+t2)dt=2[t55+t33]yy+1=2{(y+1)55+(y+1)33(y)55(y)33=2{(y+1)2y+15+(y+1)y+13y2y5yy3}Df(x,y)dxdy=2513(y+1)2y+1dy+2313(y+1)y+1dy2513y2ydy2313yydychangementy+1=ugivey+1=u213(y+1)2y+1dy=23+1u4u(2u)du=223+1u6du=27[u7]23+1=27{(3+1)7(2)7}13(y+1)y+1dy=23+1u2u(2udu)=223+1u4du=25{(3+1)5(2)5}alsochangementy=ugivey=u213y2ydy=13u4(u)(2udu)=213u6du=27[(3)71)13yydy=13u2u(2u)du=213u4xu=25{(3)51}thevalueofthisintegralisknown

Leave a Reply

Your email address will not be published. Required fields are marked *