Menu Close

let-f-xsin-x-1-x-2-2-dx-calculate-f-and-f-from-R-




Question Number 48040 by maxmathsup by imad last updated on 18/Nov/18
let f(α)=∫_(−∞) ^(+∞)   ((xsin(αx))/((1+x^2 )^2 ))dx  calculate f(α) and f^′ (α).(α from R) .
letf(α)=+xsin(αx)(1+x2)2dxcalculatef(α)andf(α).(αfromR).
Commented by Abdo msup. last updated on 20/Nov/18
1) we have?f(α)=Im (∫_(−∞) ^(+∞)  ((x^ e^(iαx) )/((1+x^2 )^2 ))dx) let  ϕ(z)=((z e^(iαz) )/((z^2  +1)^2 ))  ⇒ϕ(z)=((z e^(iαz) )/((z−i)^2 (z+i)^2 )) so the poles of ϕ are  iand −i(doubles) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,i) but  Res(ϕ,i)=lim_(z→i)   (1/((2−1!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)  { ((z e^(iαz) )/((z+i)^2 ))}^((1))   =lim_(z→i)   (((e^(iαz)  +iαz e^(iαz) )(z+i)^2  −2(z+i)z e^(iαz) )/((z+i)^4 ))  =lim_(z→i)  (((1+iαz)e^(iαz) (z+i)−2z e^(iαz) )/((z+i)^3 ))  =(((1−α)(2i)e^(−α)  −2i e^(−α) )/((2i)^3 )) =(((2i−2iα−2i)e^(−α) )/(−8i))  =(α/4) e^(−α)  ⇒∫_(−∞) ^(+∞) ϕ(z)dz =2iπ (α/4) e^(−α)   =i((απ)/2) e^(−α)  ⇒  f(α) =((πα)/2) e^(−α)   2) f^′ (α) =(π/2){e^(−α)  −α e^(−α) }=(π/2){1−α} e^(−α)  but  f^′ (α)= ∫_(−∞) ^(+∞)  (∂/∂α)(((xsin(αx))/((1+x^2 )^2 )))dx  =∫_(−∞) ^(+∞)  ((x^2  cos(αx))/((1+x^2 )^2 ))dx ⇒  ∫_(−∞) ^(+∞)   ((x^2 cos(αx))/((1+x^2 )^2 ))dx =(π/2)(1−α)e^(−α)  .
1)wehave?f(α)=Im(+xeiαx(1+x2)2dx)letφ(z)=zeiαz(z2+1)2φ(z)=zeiαz(zi)2(z+i)2sothepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)butRes(φ,i)=limzi1(21!{(zi)2φ(z)}(1)=limzi{zeiαz(z+i)2}(1)=limzi(eiαz+iαzeiαz)(z+i)22(z+i)zeiαz(z+i)4=limzi(1+iαz)eiαz(z+i)2zeiαz(z+i)3=(1α)(2i)eα2ieα(2i)3=(2i2iα2i)eα8i=α4eα+φ(z)dz=2iπα4eα=iαπ2eαf(α)=πα2eα2)f(α)=π2{eααeα}=π2{1α}eαbutf(α)=+α(xsin(αx)(1+x2)2)dx=+x2cos(αx)(1+x2)2dx+x2cos(αx)(1+x2)2dx=π2(1α)eα.

Leave a Reply

Your email address will not be published. Required fields are marked *