Menu Close

let-f-z-sin-2z-z-n-with-n-integr-natural-calculate-Res-f-0-




Question Number 63079 by mathmax by abdo last updated on 28/Jun/19
let f(z) =((sin(2z))/z^n )    with n integr natural   calculate Res(f,0)
letf(z)=sin(2z)znwithnintegrnaturalcalculateRes(f,0)
Commented by mathmax by abdo last updated on 03/Jul/19
0 is pole of f at ordre n ⇒Res(f,0) =lim_(z→0)  (1/((n−1)!)){ z^n f(z)}^((n−1))   =lim_(z→0)   (1/((n−1)!)) {sin(2z)}^((n−1))   we have sin^((1)) (2z) =2cos(2z)=2 sin(2z+(π/2)) let suppose that  sin^((n)) (2z) =2^n sin(2z+((nπ)/2)) ⇒sin^((n+1)) (2z) =2^(n+1) cos(2z+((nπ)/2))  =2^(n+1) sin(2z +(n+1)(π/2))  so the relation is true at ordr n+1 ⇒  Res(f,0) =lim_(z→0)  (1/((n−1)!)) ×2^(n−1) sin(2z+(((n−1)π)/2))  =(2^(n−1) /((n−1)!))sin((((n−1)π)/2))   with n≥1 .
0ispoleoffatordrenRes(f,0)=limz01(n1)!{znf(z)}(n1)=limz01(n1)!{sin(2z)}(n1)wehavesin(1)(2z)=2cos(2z)=2sin(2z+π2)letsupposethatsin(n)(2z)=2nsin(2z+nπ2)sin(n+1)(2z)=2n+1cos(2z+nπ2)=2n+1sin(2z+(n+1)π2)sotherelationistrueatordrn+1Res(f,0)=limz01(n1)!×2n1sin(2z+(n1)π2)=2n1(n1)!sin((n1)π2)withn1.

Leave a Reply

Your email address will not be published. Required fields are marked *