Menu Close

let-f-z-z-2-1-z-2-1-z-2-4-developp-f-at-integr-serie-




Question Number 37354 by math khazana by abdo last updated on 12/Jun/18
let f(z) =  ((z^2  +1)/((z^2  −1)(z^2  −4)))  developp f at integr serie .
letf(z)=z2+1(z21)(z24)developpfatintegrserie.
Commented by math khazana by abdo last updated on 12/Jun/18
we have f(z)=  ((z^2  −1 +2)/((z^2 −1)(z^2 −4)))  = (1/(z^2 −4))  +(2/((z^2 −1)(z^2 −4)))  =(1/(z^2 −4)) −(2/3){  (1/(z^2 −1)) −(1/(z^2 −4))}  = (1/(z^2 −4))  +(2/(3(z^2 −4)))  +(2/3) (1/(1−z^2 ))  =(5/3) (1/(z^2 −4))  +(2/3) (1/(1−z^2 ))  = ((−5)/(12)) (1/(1−((z/2))^2 )) +(2/3) (1/(1−z^2 )) so if ∣z∣<1 we get  f(z)= −(5/(12)) Σ_(n=0) ^∞   ((z/2))^(2n)   +(2/3)Σ_(n=0) ^∞  z^(2n)   =−(5/(12)) Σ_(n=0) ^∞   (z^(2n) /4^n ) +(2/3)Σ_(n=0) ^∞  z^(2n)   .
wehavef(z)=z21+2(z21)(z24)=1z24+2(z21)(z24)=1z2423{1z211z24}=1z24+23(z24)+2311z2=531z24+2311z2=51211(z2)2+2311z2soifz∣<1wegetf(z)=512n=0(z2)2n+23n=0z2n=512n=0z2n4n+23n=0z2n.

Leave a Reply

Your email address will not be published. Required fields are marked *