Menu Close

let-f-z-z-z-2-z-2-developp-f-at-integr-serie-




Question Number 39038 by maxmathsup by imad last updated on 01/Jul/18
let f(z) = (z/(z^2  −z+2))  developp f at integr serie.
letf(z)=zz2z+2developpfatintegrserie.
Commented by prof Abdo imad last updated on 02/Jul/18
let decompose f(x) ondide C(x)  Δ=1−4(2)=−7=(i(√7))^2  ⇒  z_1 =((1+i(√7))/2) and z_2 =((1−i(√7))/2) ⇒  f(z) = (z/((z−z_1 )(z−z_2 ))) = (a/(z−z_1 )) +(b/(z−z_2 ))  a= (z_1 /(z_1 −z_2 )) = (z_1 /(i(√7))) =((−iz_1 )/( (√7)))  b = (z_2 /(z_2 −z_1 )) = (z_2 /(−i(√7))) = ((iz_2 )/( (√7))) ⇒  f(x)= ((−iz_1 )/( (√7)(z−z_1 ))) +((iz_2 )/( (√7)(z−z_2 ))) ⇒  f^((n)) (x) =((−iz_1 )/( (√7))){ (((−1)^n n!)/((z−z_1 )^(n+1) ))} +((iz_2 )/( (√7))){ (((−1)^n n!)/((z−z_2 )^(n+1) ))}  = (((−1)^n n!)/( (√7))){  (z_2 /((z−z_2 )^(n+1) )) −(z_1 /((z−z_1 )^(n+1) ))} ⇒  f^((n)) (0)=(((−1)^n n!)/( (√7))){ (z_2 /((−1)^(n+1)  z_2 ^(n+1) ))−(z_1 /((−1)^(n+1)  z_1 ^(n+1) ))}  = ((n!)/( (√7))){ ((−z_2 )/z_2 ^(n+1) ) +(z_1 /z_1 ^(n+1) )}  finally   f(z) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) z^n  =Σ_(n=0) ^∞  (1/( (√7)))( (1/z_1 ^n ) −(1/z_2 ^n ))z^n
letdecomposef(x)ondideC(x)Δ=14(2)=7=(i7)2z1=1+i72andz2=1i72f(z)=z(zz1)(zz2)=azz1+bzz2a=z1z1z2=z1i7=iz17b=z2z2z1=z2i7=iz27f(x)=iz17(zz1)+iz27(zz2)f(n)(x)=iz17{(1)nn!(zz1)n+1}+iz27{(1)nn!(zz2)n+1}=(1)nn!7{z2(zz2)n+1z1(zz1)n+1}f(n)(0)=(1)nn!7{z2(1)n+1z2n+1z1(1)n+1z1n+1}=n!7{z2z2n+1+z1z1n+1}finallyf(z)=n=0f(n)(0)n!zn=n=017(1z1n1z2n)zn
Commented by prof Abdo imad last updated on 02/Jul/18
let simplify  (1/z_1 ^n ) −(1/z_2 ^n )  = ((z_2 ^n  −z_1 ^n )/((z_1 z_2 )^n ))  = (((((1−i(√7))/2))^n  −( ((1+i(√7))/2))^n )/2)  = −(1/2^(n+1) ) { (1+i(√7))^n  −(1−i(√7))^n }  =−(1/2^(n+1) ) { Σ_(k=0) ^n  C_n ^k  (i(√7))^k  −Σ_(k=0) ^n  C_n ^k (−i(√7))^k }  =((−1)/2^(n+1) ) Σ_(k=0) ^n   C_n ^k  { (i(√7))^k  −(−i(√7))^k }  =((−1)/2^(n+1) ) Σ_(p=0) ^([((n−1)/2)])    C_n ^(2p+1)  { 2i(−1)^p  7^p (√7)  }  =((−i)/2^n ) (√7)Σ_(p=0) ^([((n−1)/2)])   C_n ^(2p+1)  (−7)^p  ⇒  f(z)=Σ_(n=0) ^∞   ((−i)/2^n ){ Σ_(p=0) ^([((n−1)/2)])   (−7)^(p )  C_n ^(2p+1) }z^n
letsimplify1z1n1z2n=z2nz1n(z1z2)n=(1i72)n(1+i72)n2=12n+1{(1+i7)n(1i7)n}=12n+1{k=0nCnk(i7)kk=0nCnk(i7)k}=12n+1k=0nCnk{(i7)k(i7)k}=12n+1p=0[n12]Cn2p+1{2i(1)p7p7}=i2n7p=0[n12]Cn2p+1(7)pf(z)=n=0i2n{p=0[n12](7)pCn2p+1}zn

Leave a Reply

Your email address will not be published. Required fields are marked *