let-f-z-z-z-2-z-2-developp-f-at-integr-serie- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 39038 by maxmathsup by imad last updated on 01/Jul/18 letf(z)=zz2−z+2developpfatintegrserie. Commented by prof Abdo imad last updated on 02/Jul/18 letdecomposef(x)ondideC(x)Δ=1−4(2)=−7=(i7)2⇒z1=1+i72andz2=1−i72⇒f(z)=z(z−z1)(z−z2)=az−z1+bz−z2a=z1z1−z2=z1i7=−iz17b=z2z2−z1=z2−i7=iz27⇒f(x)=−iz17(z−z1)+iz27(z−z2)⇒f(n)(x)=−iz17{(−1)nn!(z−z1)n+1}+iz27{(−1)nn!(z−z2)n+1}=(−1)nn!7{z2(z−z2)n+1−z1(z−z1)n+1}⇒f(n)(0)=(−1)nn!7{z2(−1)n+1z2n+1−z1(−1)n+1z1n+1}=n!7{−z2z2n+1+z1z1n+1}finallyf(z)=∑n=0∞f(n)(0)n!zn=∑n=0∞17(1z1n−1z2n)zn Commented by prof Abdo imad last updated on 02/Jul/18 letsimplify1z1n−1z2n=z2n−z1n(z1z2)n=(1−i72)n−(1+i72)n2=−12n+1{(1+i7)n−(1−i7)n}=−12n+1{∑k=0nCnk(i7)k−∑k=0nCnk(−i7)k}=−12n+1∑k=0nCnk{(i7)k−(−i7)k}=−12n+1∑p=0[n−12]Cn2p+1{2i(−1)p7p7}=−i2n7∑p=0[n−12]Cn2p+1(−7)p⇒f(z)=∑n=0∞−i2n{∑p=0[n−12](−7)pCn2p+1}zn Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-F-x-0-2pi-cos-4t-x-2-2x-cost-1-dt-Next Next post: let-f-x-1-1-sinx-2pi-periodic-even-developp-f-at-fourier-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.