Menu Close

let-from-R-and-u-n-2cos-u-n-1-u-n-2-0-withn-2-find-u-n-and-study-its-convrgence-




Question Number 36920 by maxmathsup by imad last updated on 07/Jun/18
let α from R and  u_n  −2cos(α)u_(n−1)  +u_(n−2) =0   withn≥2  find u_n  and study its convrgence.
letαfromRandun2cos(α)un1+un2=0withn2findunandstudyitsconvrgence.
Commented by math khazana by abdo last updated on 10/Jun/18
(e)⇒ u_(n+2)  −2 cosα u_(n+1)  +u_n =0  the caracteristic equation is  x^2  −2cosα x +1 =0  Δ^′  =cos^2 α −1 =−sin^2 α =(isinα)^2  ⇒  x_1 =cosα +isinα =e^(iα)   x_2 =cosα −isinα =e^(−iα)   u_n = a e^(inα)   +be^(−inα)   u_0 =a+b  u_1 =a e^(iα)  +b e^(−iα)  =a e^(iα)  +(u_o −a)e^(−iα)   =2ia sin(α) +u_0  e^(−iα) ⇒2ia sinα =u_1 −u_0 e^(−iα)   if sinα≠o we get  a =((u_1  −u_o e^(−iα) )/(2isinα))  b =u_0 −a =u_0   −((u_1  −u_0  e^(−iα) )/(2isinα))  ....
(e)un+22cosαun+1+un=0thecaracteristicequationisx22cosαx+1=0Δ=cos2α1=sin2α=(isinα)2x1=cosα+isinα=eiαx2=cosαisinα=eiαun=aeinα+beinαu0=a+bu1=aeiα+beiα=aeiα+(uoa)eiα=2iasin(α)+u0eiα2iasinα=u1u0eiαifsinαowegeta=u1uoeiα2isinαb=u0a=u0u1u0eiα2isinα.

Leave a Reply

Your email address will not be published. Required fields are marked *