Menu Close

Let-function-f-x-be-defined-as-f-x-x-2-bx-c-where-b-c-R-And-f-1-2f-5-f-9-32-Find-no-of-ordered-pairs-b-c-such-that-f-x-8-x-1-9-




Question Number 33651 by rahul 19 last updated on 21/Apr/18
Let function f(x) be defined as   f(x)= x^2 +bx+c , where b,c∈R .  And f(1) − 2f(5) +f(9) =32.  Find no. of ordered pairs (b,c)  such that ∣f(x)∣≤8 ∀ x∈ [1,9] ?
Letfunctionf(x)bedefinedasf(x)=x2+bx+c,whereb,cR.Andf(1)2f(5)+f(9)=32.Findno.oforderedpairs(b,c)suchthatf(x)∣⩽8x[1,9]?
Answered by MJS last updated on 21/Apr/18
something about polynomial functions of  2^(nd)  degree  there are 2 different points of view  usually we are focused on zeros  x^2 +px+q=0 ⇔  ⇔ (x−x_1 )(x−x_2 ) ⇔  ⇔ p=−(x_1 +x_2 ) ∧ q=x_1 x_2   but we should think about steepness, orientation  and shifts in both x− and y−directions  y=ax^2 +bx+c  a>0 ⇔ “hanging” parabola  a<0 ⇔ “standing parabola”  ∣a∣ determines steepness            y′=2ax+b            ∣2a∣<1 ⇔ “flat” or “wide” parabola            ∣2a∣>1 ⇔ “steep” or “narrow” parabola  b and c have got something to do with the  x− and y−shifts  let′s look at the basic function  y=x^2   shift up/down  y−v=x^2  ⇔ y=x^2 +v  shift left/right  y=(x+u)^2 +v ⇔ y=x^2 +2ux+u^2 +v  b=2u ∧ c=u^2 +v ⇔ u=(b/2) ∧ v=c−(b^2 /4)  so y=x^2 +bx+c is a shifted basic parabola.  we are looking for a part of this function  which fits into a window of width 8 and  height 16 (because the width of the given  interval [1;9] is 8 and abs(f(x))≤8 ⇔   ⇔ −8≤f(x)≤8 ⇔ 0≤f(x)+8≤16    we can look at y=x^2  and afterwards do the  shifting  1. try on left arm (symm. to right arm)  f(x): y=x^2   x≤0  f(x)±16=f(x−8)  x^2 ±16=x^2 −16x+64  16x=64±16       [x=3 ∨ x=5 ⇒ no solution on left arm       f(±3)=9; f(±5)=25 but f(0)=0 ⇒ our       window would be 8×25 instead of 8×16]  2. try center  f(−4)=16  f(0)=0  f(4)=16  is the only solution    but we need x∈[1;9] instead of x∈[−4;4] ⇒  ⇒ shift 5 to the right  y=(x−5)^2   and we need y∈[−8;8] instead of y∈[0;16] ⇒  ⇒ shift 8 down  y=(x−5)^2 −8    y=x^2 −10x+17  there′s only one pair (b;c)=(−10;17)         [f(1)−2f(5)+f(9)=32 is true for any pair       (b;c), so we didn′t need it:       f(1)=1+b+c       f(5)=25+5b+c       f(9)=81+9b+c       (1+b+c)−2(25+5b+c)+(81+9b+c)=32]
somethingaboutpolynomialfunctionsof2nddegreethereare2differentpointsofviewusuallywearefocusedonzerosx2+px+q=0(xx1)(xx2)p=(x1+x2)q=x1x2butweshouldthinkaboutsteepness,orientationandshiftsinbothxandydirectionsy=ax2+bx+ca>0hangingparabolaa<0standingparabolaadeterminessteepnessy=2ax+b2a∣<1flatorwideparabola2a∣>1steepornarrowparabolabandchavegotsomethingtodowiththexandyshiftsletslookatthebasicfunctiony=x2shiftup/downyv=x2y=x2+vshiftleft/righty=(x+u)2+vy=x2+2ux+u2+vb=2uc=u2+vu=b2v=cb24soy=x2+bx+cisashiftedbasicparabola.wearelookingforapartofthisfunctionwhichfitsintoawindowofwidth8andheight16(becausethewidthofthegiveninterval[1;9]is8andabs(f(x))88f(x)80f(x)+816wecanlookaty=x2andafterwardsdotheshifting1.tryonleftarm(symm.torightarm)f(x):y=x2x0f(x)±16=f(x8)x2±16=x216x+6416x=64±16[x=3x=5nosolutiononleftarmf(±3)=9;f(±5)=25butf(0)=0ourwindowwouldbe8×25insteadof8×16]2.trycenterf(4)=16f(0)=0f(4)=16istheonlysolutionbutweneedx[1;9]insteadofx[4;4]shift5totherighty=(x5)2andweneedy[8;8]insteadofy[0;16]shift8downy=(x5)28y=x210x+17theresonlyonepair(b;c)=(10;17)[f(1)2f(5)+f(9)=32istrueforanypair(b;c),sowedidntneedit:f(1)=1+b+cf(5)=25+5b+cf(9)=81+9b+c(1+b+c)2(25+5b+c)+(81+9b+c)=32]
Commented by rahul 19 last updated on 22/Apr/18
thank u so much sir!
thankusomuchsir!

Leave a Reply

Your email address will not be published. Required fields are marked *