Menu Close

let-g-0-1-ln-1-e-i-x-2-dx-find-a-simple-form-of-g-from-R-




Question Number 36737 by abdo mathsup 649 cc last updated on 04/Jun/18
let g(θ) =∫_0 ^1 ln( 1−e^(iθ) x^2 )dx  find a simple form of g(θ) .θ from R.
letg(θ)=01ln(1eiθx2)dxfindasimpleformofg(θ).θfromR.
Commented by math khazana by abdo last updated on 05/Aug/18
we have proved that for ∣z∣=1  ∫_0 ^1 ln(1−zx)dx =(1−(1/z))ln(1−z)−1 but  g(θ) =∫_0 ^1 ln(1−(e^(i(θ/2)) x)^2 )dx  =∫_0 ^1 ln(1−e^((iθ)/2) x)dx +∫_0 ^1 ln(1 +e^((iθ)/2) x)dx but  ∫_0 ^1 ln(1−e^((iθ)/2) x)dx=(1−e^(−((iθ)/2)) )ln(1−e^((iθ)/2) )−1 let  find f(z) =∫_0 ^1 ln(1+zx)dx we have for ∣u∣<1  ln^′ (1+u) =(1/(1+u))=Σ_(n=0) ^∞ (−1)^n u^n  ⇒  ln(1+u) =Σ_(n=0) ^∞  (((−1)^n )/(n+1))u^(n+1)  =Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ⇒ln(1+zx) =Σ_(n=1) ^∞  (−1)^(n−1)  ((z^n  x^n )/n) ⇒  f(z) =Σ_(n=1) ^∞ (−1)^(n−1) (z^n /n) ∫_0 ^1  x^n dx  =Σ_(n=1) ^∞  (−1)^(n−1) (z^n /(n(n+1)))  =Σ_(n=1) ^∞  (−1)^(n−1) ((1/n)−(1/(n+1)))z^n   =Σ_(n=1) ^∞  (−1)^(n−1)  (z^n /n) −Σ_(n=1) ^∞ (−1)^(n−1)  (z^n /(n+1))  =ln(1+z) −Σ_(n=2) ^∞  (−1)^(n−2)  (z^(n−1) /n)  =ln(1+z) +(1/z)Σ_(n=2) ^∞  (−1)^(n−1)  (z^n /n)  =ln(1+z) +(1/z){Σ_(n=1) ^∞  (−1)^(n−1)  (z^n /n) −z}  =ln(1+z) +(1/z)ln(1+z)−1  =(1+(1/z))ln(1+z)−1⇒  ∫_0 ^1 ln(1+e^((iθ)/2) x)dx =(1+e^(−((iθ)/2)) )ln(1+e^((iθ)/2) )−1⇒  g(θ) =(1−e^((iπ)/2) )ln(1−e^((iθ)/2) ) +(1+e^(−((iθ)/2)) )ln(1+e^(−((iθ)/2)) )−2
wehaveprovedthatforz∣=101ln(1zx)dx=(11z)ln(1z)1butg(θ)=01ln(1(eiθ2x)2)dx=01ln(1eiθ2x)dx+01ln(1+eiθ2x)dxbut01ln(1eiθ2x)dx=(1eiθ2)ln(1eiθ2)1letfindf(z)=01ln(1+zx)dxwehaveforu∣<1ln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nn+1un+1=n=1(1)n1unnln(1+zx)=n=1(1)n1znxnnf(z)=n=1(1)n1znn01xndx=n=1(1)n1znn(n+1)=n=1(1)n1(1n1n+1)zn=n=1(1)n1znnn=1(1)n1znn+1=ln(1+z)n=2(1)n2zn1n=ln(1+z)+1zn=2(1)n1znn=ln(1+z)+1z{n=1(1)n1znnz}=ln(1+z)+1zln(1+z)1=(1+1z)ln(1+z)101ln(1+eiθ2x)dx=(1+eiθ2)ln(1+eiθ2)1g(θ)=(1eiπ2)ln(1eiθ2)+(1+eiθ2)ln(1+eiθ2)2

Leave a Reply

Your email address will not be published. Required fields are marked *