let-g-0-1-ln-1-e-i-x-2-dx-find-a-simple-form-of-g-from-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 36737 by abdo mathsup 649 cc last updated on 04/Jun/18 letg(θ)=∫01ln(1−eiθx2)dxfindasimpleformofg(θ).θfromR. Commented by math khazana by abdo last updated on 05/Aug/18 wehaveprovedthatfor∣z∣=1∫01ln(1−zx)dx=(1−1z)ln(1−z)−1butg(θ)=∫01ln(1−(eiθ2x)2)dx=∫01ln(1−eiθ2x)dx+∫01ln(1+eiθ2x)dxbut∫01ln(1−eiθ2x)dx=(1−e−iθ2)ln(1−eiθ2)−1letfindf(z)=∫01ln(1+zx)dxwehavefor∣u∣<1ln′(1+u)=11+u=∑n=0∞(−1)nun⇒ln(1+u)=∑n=0∞(−1)nn+1un+1=∑n=1∞(−1)n−1unn⇒ln(1+zx)=∑n=1∞(−1)n−1znxnn⇒f(z)=∑n=1∞(−1)n−1znn∫01xndx=∑n=1∞(−1)n−1znn(n+1)=∑n=1∞(−1)n−1(1n−1n+1)zn=∑n=1∞(−1)n−1znn−∑n=1∞(−1)n−1znn+1=ln(1+z)−∑n=2∞(−1)n−2zn−1n=ln(1+z)+1z∑n=2∞(−1)n−1znn=ln(1+z)+1z{∑n=1∞(−1)n−1znn−z}=ln(1+z)+1zln(1+z)−1=(1+1z)ln(1+z)−1⇒∫01ln(1+eiθ2x)dx=(1+e−iθ2)ln(1+eiθ2)−1⇒g(θ)=(1−eiπ2)ln(1−eiθ2)+(1+e−iθ2)ln(1+e−iθ2)−2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-0-1-ln-1-e-i-x-dx-find-a-simple-form-of-f-Next Next post: 1-2-ln-x-4-4-x-2-4-dx-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.