Menu Close

Let-G-be-a-connected-graph-and-let-X-be-the-set-of-vertices-of-G-of-odd-degree-suppose-that-X-2k-where-k-1-show-that-there-are-k-edge-disjoint-trail-Q-1-Q-2-Q-k-in-G-such-that-E-G-E-Q-1-




Question Number 94419 by sorour87.d last updated on 18/May/20
Let G be a connected graph and let X be the set of vertices of G of odd degree. suppose that ∣X∣=2k, where k≥1   show that there are k edge-disjoint trail Q_1 , Q_2 ,...,Q_k  in G such that  E(G)=E(Q_1 )∪E(Q_2 )∪....∪E(Q_k )
$${Let}\:{G}\:{be}\:{a}\:{connected}\:{graph}\:{and}\:{let}\:{X}\:{be}\:{the}\:{set}\:{of}\:{vertices}\:{of}\:{G}\:{of}\:{odd}\:{degree}.\:{suppose}\:{that}\:\mid{X}\mid=\mathrm{2}{k},\:{where}\:{k}\geqslant\mathrm{1}\: \\ $$$${show}\:{that}\:{there}\:{are}\:{k}\:{edge}-{disjoint}\:{trail}\:{Q}_{\mathrm{1}} ,\:{Q}_{\mathrm{2}} ,…,{Q}_{{k}} \:{in}\:{G}\:{such}\:{that} \\ $$$${E}\left({G}\right)={E}\left({Q}_{\mathrm{1}} \right)\cup{E}\left({Q}_{\mathrm{2}} \right)\cup….\cup{E}\left({Q}_{{k}} \right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *