Menu Close

Let-G-be-the-group-1-1-and-let-H-1-show-that-G-H-is-an-Isomorphism-Hello-




Question Number 192746 by Mastermind last updated on 26/May/23
Let G be the group ({1, ı, −1, −ı}, ∙)  and let H ≤ (+_− 1, ∙), show that  θ:G→H is an Isomorphism.    Hello!
LetGbethegroup({1,ı,1,ı},)andletH(+1,),showthatθ:GHisanIsomorphism.Hello!
Answered by aleks041103 last updated on 27/May/23
If I understood the question correctly, we   need to show that G is iomorphic to a subgroup  of the group ({+1,−1},∙).  But G≅C_4  and ({+1,−1},∙)≅C_2 .  ⇒∀H≤C_2 , ∣H∣∈{1,2}  while ∣G∣=4  if H≅G, then ∣H∣=∣G∣=4∉{1,2}    what you′re asking is not true and therefore  impossible to prove.
IfIunderstoodthequestioncorrectly,weneedtoshowthatGisiomorphictoasubgroupofthegroup({+1,1},).ButGC4and({+1,1},)C2.HC2,H∣∈{1,2}whileG∣=4ifHG,thenH∣=∣G∣=4{1,2}whatyoureaskingisnottrueandthereforeimpossibletoprove.

Leave a Reply

Your email address will not be published. Required fields are marked *