Menu Close

Let-g-is-the-inverse-function-of-f-and-f-x-x-10-1-x-2-If-g-2-a-then-g-2-




Question Number 150590 by liberty last updated on 13/Aug/21
Let g is the inverse function of  f and f ′(x)=(x^(10) /(1+x^2 )). If g(2)= a then  g ′(2) =__
$$\mathrm{Let}\:\mathrm{g}\:\mathrm{is}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{function}\:\mathrm{of} \\ $$$$\mathrm{f}\:\mathrm{and}\:\mathrm{f}\:'\left(\mathrm{x}\right)=\frac{\mathrm{x}^{\mathrm{10}} }{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }.\:\mathrm{If}\:\mathrm{g}\left(\mathrm{2}\right)=\:{a}\:\mathrm{then} \\ $$$$\mathrm{g}\:'\left(\mathrm{2}\right)\:=\_\_\: \\ $$
Answered by Olaf_Thorendsen last updated on 13/Aug/21
fog(x) = x  g′(x)×f′og(x) = 1  g′(x) = (1/(f′og(x)))  g′(2) = (1/(f′og(2))) = (1/((g(2)^(10) )/(1+g(2)^2 ))) = ((1+a^2 )/a^(10) )
$${f}\mathrm{o}{g}\left({x}\right)\:=\:{x} \\ $$$${g}'\left({x}\right)×{f}'\mathrm{o}{g}\left({x}\right)\:=\:\mathrm{1} \\ $$$${g}'\left({x}\right)\:=\:\frac{\mathrm{1}}{{f}'\mathrm{o}{g}\left({x}\right)} \\ $$$${g}'\left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{{f}'\mathrm{o}{g}\left(\mathrm{2}\right)}\:=\:\frac{\mathrm{1}}{\frac{{g}\left(\mathrm{2}\right)^{\mathrm{10}} }{\mathrm{1}+{g}\left(\mathrm{2}\right)^{\mathrm{2}} }}\:=\:\frac{\mathrm{1}+{a}^{\mathrm{2}} }{{a}^{\mathrm{10}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *