Menu Close

let-g-x-0-t-ln-t-dt-1-xt-3-with-x-gt-0-1-give-a-explicit-form-of-g-x-2-calculate-0-t-ln-t-1-t-3-dt-3-calculate-0-tln-t-1-2t-3-dt-4-calculate-A-




Question Number 44515 by maxmathsup by imad last updated on 30/Sep/18
let g(x) =∫_0 ^∞    ((t ln(t)dt)/((1+xt)^3 )) with x>0  1) give a explicit form of g(x)  2) calculate ∫_0 ^∞    ((t ln(t))/((1+t)^3 ))dt  3) calculate ∫_0 ^∞  ((tln(t))/((1+2t)^3 )) dt  4) calculate A(θ) =∫_0 ^∞   ((t ln(t))/((1+t sinθ)^3 ))dt  with  0<θ<(π/2)
letg(x)=0tln(t)dt(1+xt)3withx>01)giveaexplicitformofg(x)2)calculate0tln(t)(1+t)3dt3)calculate0tln(t)(1+2t)3dt4)calculateA(θ)=0tln(t)(1+tsinθ)3dtwith0<θ<π2
Answered by maxmathsup by imad last updated on 02/Oct/18
1) let f(x) =∫_0 ^∞   ((ln(t))/((1+tx)^2 ))dt  we have proved that f(x)=−((ln(x))/x)  ⇒f^′ (x) = −∫_0 ^∞    ((2t(1+tx)ln(t))/((1+tx)^4 )) =−∫_0 ^∞  ((2tln(t))/((1+tx)^3 ))dt ⇒  g(x) =−(1/2)f^′ (x) but f^′ (x) =−((1−ln(x))/x^2 ) ⇒g(x)=((1−ln(x))/(2x^2 ))  2) ∫_0 ^∞    ((tln(t))/((1+t)^3 )) =g(1)=0  3) ∫_0 ^∞   ((t ln(t))/((1+2t)^3 ))dt =g(2) =((1−ln(2))/8)  4)∫_0 ^∞   ((tln(t))/((1+tsinθ)^3 ))dt =g(sinθ) =((1−ln(sinθ))/(2sin^2 θ)) .
1)letf(x)=0ln(t)(1+tx)2dtwehaveprovedthatf(x)=ln(x)xf(x)=02t(1+tx)ln(t)(1+tx)4=02tln(t)(1+tx)3dtg(x)=12f(x)butf(x)=1ln(x)x2g(x)=1ln(x)2x22)0tln(t)(1+t)3=g(1)=03)0tln(t)(1+2t)3dt=g(2)=1ln(2)84)0tln(t)(1+tsinθ)3dt=g(sinθ)=1ln(sinθ)2sin2θ.

Leave a Reply

Your email address will not be published. Required fields are marked *