Question Number 44515 by maxmathsup by imad last updated on 30/Sep/18
$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$$$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$$$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$
Answered by maxmathsup by imad last updated on 02/Oct/18
$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{2}} }{dt}\:\:{we}\:{have}\:{proved}\:{that}\:{f}\left({x}\right)=−\frac{{ln}\left({x}\right)}{{x}} \\ $$$$\Rightarrow{f}^{'} \left({x}\right)\:=\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{t}\left(\mathrm{1}+{tx}\right){ln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{4}} }\:=−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{tln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{3}} }{dt}\:\Rightarrow \\ $$$${g}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}{f}^{'} \left({x}\right)\:{but}\:{f}^{'} \left({x}\right)\:=−\frac{\mathrm{1}−{ln}\left({x}\right)}{{x}^{\mathrm{2}} }\:\Rightarrow{g}\left({x}\right)=\frac{\mathrm{1}−{ln}\left({x}\right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }\:={g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }{dt}\:={g}\left(\mathrm{2}\right)\:=\frac{\mathrm{1}−{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$$$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+{tsin}\theta\right)^{\mathrm{3}} }{dt}\:={g}\left({sin}\theta\right)\:=\frac{\mathrm{1}−{ln}\left({sin}\theta\right)}{\mathrm{2}{sin}^{\mathrm{2}} \theta}\:. \\ $$