Menu Close

let-g-x-1-1-x-4-1-find-g-n-x-2-calculate-g-n-0-3-if-g-x-u-n-x-n-find-the-sequence-u-n-




Question Number 33257 by prof Abdo imad last updated on 14/Apr/18
let g(x)= (1/(1+x^4 ))  1) find g^((n)) (x)  2) calculate g^((n)) (0)  3) if g(x)=Σ u_n  x^n    find the sequence u_n
letg(x)=11+x41)findg(n)(x)2)calculateg(n)(0)3)ifg(x)=Σunxnfindthesequenceun
Commented by prof Abdo imad last updated on 15/Apr/18
let decompose g(x) inside C(x)  g(x)= (1/((x^2 )^2 −i^2 )) = (1/((x^2 −i)(x^2 +i)))  = (1/((x−(√i))(x+(√i))(x −(√(−i)))(x+(√(−i)))))  = (1/((x −e^(i(π/4)) )(x +e^(i(π/4)) )(x  −e^(−i(π/4)) )( x +e^(−i(π/4)) )))  = (a/(x −e^(i(π/4)) ))  +(b/(x +e^(i(π/4)) )) + (c/(x −e^(−i(π/4)) )) + (d/(x + e^(−i(π/4)) ))  a = (1/(p^′ ( e^(i(π/4)) )))  with p(x)= 1+x^4  ⇒p^′ (x)=4x^3   if z_k  pole p^′ (z_k ) = 4z_k ^3   =((−4)/z_k ) ⇒a =−(e^(i(π/4)) /4)  p^′ (−e^(i(π/4)) ) =((−4)/(−e^(i(π/4)) )) = (4/e^(i(π/4)) ) ⇒ b = (1/4) e^(i(π/4))   p^′ ( e^(−i(π/4)) ) =((−4)/e^(−i(π/4)) ) ⇒ c =−(1/4) e^(−i(π/4))   p^′  ( −e^(−i(π/4)) )  =  ((−4)/(−e^(−i(π/4)) ))  ⇒ d= (1/4) e^(−i(π/4))   g(x) =−(e^(i(π/4)) /(4(x −e^(i(π/4)) )))  +(e^(i(π/4)) /(4( x +e^(i(π/4)) ))) −(e^(−i(π/4)) /(4(x −_ e^(−i(π/4)) )))  + (e^(−i(π/4)) /(4(  x +e^(−i(π/4)) ))) ⇒  g^((n)) (x) = (e^(i(π/4)) /4) (   (((−1)^n n!)/((x +e^(i(π/(4{))) )^(n+1) )) −(((−1)^n n!)/((x −e^(i(π/4)) )^(n+1) )))  + (e^(−i(π/4)) /4) (   (((−1)^n n!)/((x + e^(−i(π/4)) )^(n+1) )) − (((−1)^n n!)/((x −e^(−i(π/4)) )^(n+1) )))  g^((n)) (0) =(((−1)^n n! e^(i(π/4)) )/4)(  e^(−i(((n+1)π)/4))  −(−1)^(n+1)  e^(−i(((n+1)π)/4)) )  + (((−1)^n n! e^(−i(π/4)) )/4)(  e^(i(((n+1)π)/4))  −(−1)^(n+1)  e^(i(((n+1)π)/4)) )...  be continued...
letdecomposeg(x)insideC(x)g(x)=1(x2)2i2=1(x2i)(x2+i)=1(xi)(x+i)(xi)(x+i)=1(xeiπ4)(x+eiπ4)(xeiπ4)(x+eiπ4)=axeiπ4+bx+eiπ4+cxeiπ4+dx+eiπ4a=1p(eiπ4)withp(x)=1+x4p(x)=4x3ifzkpolep(zk)=4zk3=4zka=eiπ44p(eiπ4)=4eiπ4=4eiπ4b=14eiπ4p(eiπ4)=4eiπ4c=14eiπ4p(eiπ4)=4eiπ4d=14eiπ4g(x)=eiπ44(xeiπ4)+eiπ44(x+eiπ4)eiπ44(xeiπ4)+eiπ44(x+eiπ4)g(n)(x)=eiπ44((1)nn!(x+eiπ4{)n+1(1)nn!(xeiπ4)n+1)+eiπ44((1)nn!(x+eiπ4)n+1(1)nn!(xeiπ4)n+1)g(n)(0)=(1)nn!eiπ44(ei(n+1)π4(1)n+1ei(n+1)π4)+(1)nn!eiπ44(ei(n+1)π4(1)n+1ei(n+1)π4)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *