Menu Close

let-g-x-arctan-x-1-t-2-1-t-2-dt-with-x-gt-0-find-a-simple-form-of-g-x-




Question Number 39023 by maxmathsup by imad last updated on 01/Jul/18
let g(x)= ∫_(−∞) ^(+∞)    ((arctan(x(1+t^2 )))/(1+t^2 ))dt   with x>0  find a simple form of g(x) .
letg(x)=+arctan(x(1+t2))1+t2dtwithx>0findasimpleformofg(x).
Commented by math khazana by abdo last updated on 08/Jul/18
we have g^′ (x) = ∫_(−∞) ^(+∞)    (1/(1+x^2 (1+t^2 )^2 ))dt  = ∫_(−∞) ^(+∞)      (dt/((x(1+t^2 )−i)(x(1+t^2 ) +i)))  = ∫_(−∞) ^(+∞)        (dt/((xt^2  +x−i)(xt^2  +x+i)))  let ϕ(z) =  (1/((xz^2  +x−i)(xz^2  +x+i)))  ϕ(z) =  (1/(x^2 (z^2  +1−(i/x))(z^2   +1 +(i/x))))  =(1/(x^2 ( z −i(√(1−(i/x))))(z +i(√(1−(i/x))))(z−i(√(1+(i/x))))(z+i(√(1+(i/x))))))  we have ∣1−(i/x)∣ =(√(1+(1/x^2 ))) =((√(x^2  +1))/x)  1−(i/x) =((√(x^2  +1))/x)(  (x/( (√(x^(2 )  +1)))) −(i/x) (x/( (√(x^2  +1)))))  =r e^(iθ )   ⇒ r =((√(x^2  +1))/x)  and  cosθ = (x/( (√(x^2  +1))))  sin θ =−(1/( (√(x^2  +1))))  ⇒ tanθ = −(1/x) ⇒  θ =−arctan(x) ⇒1−(i/x) =r(x) e^(−i arctan((1/x)))   (√(1−(i/x)))=(√(r(x)))e^(−(i/2)arctan((1/x)))  and  (√(1+(i/x)))= (√(r(x))) e^((i/2)arctan((1/x)))   i(√(1−(i/x))) =(√(r(x))) e^(i(π/2)−(i/2)arctan((1/x)))   =(√(r(x)))=(√(r(x))) e^(i( (π/2) −(1/2)((π/2) −arctanx)))   =(√(r(x)))  e^(i((π/4) +(1/2)arctan(x)))   also  i(√(1+(i/x)))=(√(r(x))) e^(i(π/2) +(i/2)arctan((1/x)))   =(√(r(x)))  e^(i((π/2) + (1/2)((π/2) −arctanx)))   =(√(r(x))) e^(i( ((3π)/4) −(1/2) actan(x)))      ....be continued...
wehaveg(x)=+11+x2(1+t2)2dt=+dt(x(1+t2)i)(x(1+t2)+i)=+dt(xt2+xi)(xt2+x+i)letφ(z)=1(xz2+xi)(xz2+x+i)φ(z)=1x2(z2+1ix)(z2+1+ix)=1x2(zi1ix)(z+i1ix)(zi1+ix)(z+i1+ix)wehave1ix=1+1x2=x2+1x1ix=x2+1x(xx2+1ixxx2+1)=reiθr=x2+1xandcosθ=xx2+1sinθ=1x2+1tanθ=1xθ=arctan(x)1ix=r(x)eiarctan(1x)1ix=r(x)ei2arctan(1x)and1+ix=r(x)ei2arctan(1x)i1ix=r(x)eiπ2i2arctan(1x)=r(x)=r(x)ei(π212(π2arctanx))=r(x)ei(π4+12arctan(x))alsoi1+ix=r(x)eiπ2+i2arctan(1x)=r(x)ei(π2+12(π2arctanx))=r(x)ei(3π412actan(x)).becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *