Menu Close

let-g-x-cos-x-1-developp-g-at-integr-serie-




Question Number 40114 by maxmathsup by imad last updated on 15/Jul/18
let g(x)= cos(x+1)  developp g at integr serie
$${let}\:{g}\left({x}\right)=\:{cos}\left({x}+\mathrm{1}\right) \\ $$$${developp}\:{g}\:{at}\:{integr}\:{serie} \\ $$
Commented by prof Abdo imad last updated on 17/Jul/18
we have g(x)= Σ_(n=0) ^∞  ((g^((n)) (0))/(n!)) x^n   but g^((n)) (x)=cos(x+1+((nπ)/2)) ⇒  g^((n)) (0) =cos(1+((nπ)/2)) ⇒  g(x)= Σ_(n=0) ^∞  cos(1+((nπ)/2))(x^n /(n!))
$${we}\:{have}\:{g}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{g}^{\left({n}\right)} \left(\mathrm{0}\right)}{{n}!}\:{x}^{{n}} \\ $$$${but}\:{g}^{\left({n}\right)} \left({x}\right)={cos}\left({x}+\mathrm{1}+\frac{{n}\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${g}^{\left({n}\right)} \left(\mathrm{0}\right)\:={cos}\left(\mathrm{1}+\frac{{n}\pi}{\mathrm{2}}\right)\:\Rightarrow \\ $$$${g}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{cos}\left(\mathrm{1}+\frac{{n}\pi}{\mathrm{2}}\right)\frac{{x}^{{n}} }{{n}!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *