Question Number 37359 by math khazana by abdo last updated on 12/Jun/18
$${let}\:\:\:{g}\left({x}\right)=\:\frac{{ln}\left({z}\right)}{\mathrm{1}+{z}^{\mathrm{3}} }\:\:{give}\:{the}\:{poles}\:{z}_{{i}} \:{of}\:{g}\:{and} \\ $$$${calculate}\:{Res}\left({g}\:,{z}_{{i}} \right)\: \\ $$$$ \\ $$
Commented by math khazana by abdo last updated on 13/Jun/18
$${poles}\:{of}\:{g}\:\:\:\mathrm{1}+{z}^{\mathrm{3}} =\mathrm{0}\:\Leftrightarrow{z}^{\mathrm{3}} \:={e}^{{i}\pi} \:\:{so}\:{if}\:{z}={re}^{{i}\theta} \\ $$$$\Rightarrow{r}=\mathrm{1}\:{and}\:\mathrm{3}\theta\:=\left(\mathrm{2}{k}+\mathrm{1}\right)\pi\:\Rightarrow\theta=\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{3}} \\ $$$${the}\:{roots}\:{are}\:{z}_{{k}} ={e}^{{i}\left(\mathrm{2}{k}+\mathrm{1}\right)\frac{\pi}{\mathrm{3}}} \:\:{with}\:{k}\in\left[\left[\mathrm{0},\mathrm{2}\right]\right] \\ $$$${z}_{\mathrm{0}} ={e}^{{i}\frac{\pi}{\mathrm{3}}} \:\:\:\:,\:{z}_{\mathrm{1}} =−\mathrm{1}\:\:\:\:,\:\:{z}_{\mathrm{2}} =\:{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \:\:\:\:\:\: \\ $$$${g}\left({z}\right)\:=\:\frac{{ln}\left({z}\right)}{\left({z}−{z}_{\mathrm{0}} \right)\left({z}−{z}_{\mathrm{1}} \right)\left({z}−{z}_{\mathrm{2}} \right)}=\:\frac{{lnz}}{\left({z}+\mathrm{1}\right)\left({z}^{\mathrm{2}} −{z}+\mathrm{1}\right)} \\ $$$${Res}\left({g},{z}_{\mathrm{1}} \right)\:=\:\:\frac{{ln}\left({z}_{\mathrm{1}} \right)}{{z}_{\mathrm{1}} ^{\mathrm{2}} \:−{z}_{\mathrm{1}} +\mathrm{1}}\:=\:{i}\pi\:\frac{\mathrm{1}}{\mathrm{3}}\:={i}\frac{\pi}{\mathrm{3}} \\ $$$${Res}\left({g},{z}_{\mathrm{0}} \right)\:=\:\frac{{ln}\left({z}_{\mathrm{0}} \right)}{\left({z}_{\mathrm{0}} −{z}_{\mathrm{1}} \right)\left({z}_{\mathrm{0}} −{z}_{\mathrm{2}} \right)}\:={i}\frac{\pi}{\mathrm{3}}\:\frac{\mathrm{1}}{\left({e}^{{i}\frac{\pi}{\mathrm{3}}} \:+\mathrm{1}\right)\left({e}^{{i}\frac{\pi}{\mathrm{3}}} \:−{e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \right)} \\ $$$$={i}\frac{\pi}{\mathrm{3}}\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left(\frac{\mathrm{3}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:+\frac{\mathrm{1}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} \\ $$$$={i}\frac{\pi}{\mathrm{3}}\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{2}}\:+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\left(\mathrm{2}\:+{i}\sqrt{\mathrm{3}}\right)}\:=\:\frac{\mathrm{2}{i}\pi}{\mathrm{3}\left(\mathrm{3}+{i}\sqrt{\mathrm{3}}\right)\left(\mathrm{2}+{i}\sqrt{\mathrm{3}}\right)} \\ $$$${Res}\left({g},{z}_{\mathrm{2}} \right)\:=\:\frac{{ln}\left({z}_{\mathrm{2}} \right)}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{0}} \right)\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)} \\ $$$$={i}\frac{\mathrm{4}\pi}{\mathrm{3}}\:\frac{\mathrm{1}}{\left({e}^{{i}\mathrm{4}\frac{\pi}{\mathrm{3}}} \:−{e}^{{i}\frac{\pi}{\mathrm{3}}} \right)\left({e}^{{i}\frac{\mathrm{4}\pi}{\mathrm{3}}} \:+\mathrm{1}\right)} \\ $$