Menu Close

let-g-x-log-cosx-2sinx-developp-f-at-fourier-serie-




Question Number 144702 by mathmax by abdo last updated on 28/Jun/21
let g(x)=log(cosx +2sinx)  developp f at fourier serie
letg(x)=log(cosx+2sinx)developpfatfourierserie
Answered by mathmax by abdo last updated on 28/Jun/21
we have cosx +2sinx)=(√5)((1/( (√5)))cosx +(2/( (√5)))sinx)  let cosα=(1/( (√5))) and sinα=(2/( (√5))) ⇒tanα=2 ⇒α=arctan2 ⇒  cosx+2sinx=(√5)cos(x−α) ⇒g(x)=(1/2)log5 +log(cos(x−α))  the problem is turned to developp ϕ(t)=log(cost)  we have ϕ(t)=log(((e^(it) +e^(−t) )/2))=log(e^(it)  +e^(−it) )−log(2)  =it +log(1+e^(−2it) )−log2  we[have  log^′ (1+u)=(1/(1+u))=Σ_(n=0) ^∞  (−1)^n  u^n  ⇒  log(1+u)=Σ_(n=0) ^∞  (((−1)^n  u^(n+1) )/(n+1))=Σ_(n=1) ^∞  (−1)^(n−1)  (u^n /n)  ⇒log(1+e^(−2it) )=Σ_(n=1) ^∞  (−1)^(n−1)  (e^(−2int) /n)  ⇒ϕ(t)=−log2 +it+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)(cos(2nt)+isin(2nt))  =−log2+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nt)+i(t+Σ(...)sint)  ϕ(t)real ⇒ϕ(t)=−log2 +Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nt) ⇒  log(cosx+2sinx)=(1/2)log5 +ϕ(x−α)  =(1/2)log5 −log2 +Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2n(x−α))  =(1/2)log5−log2+Σ_(n=1) ^∞  (((−1)^(n−1) )/n)cos(2nx−2narctan(2))
wehavecosx+2sinx)=5(15cosx+25sinx)letcosα=15andsinα=25tanα=2α=arctan2cosx+2sinx=5cos(xα)g(x)=12log5+log(cos(xα))theproblemisturnedtodeveloppφ(t)=log(cost)wehaveφ(t)=log(eit+et2)=log(eit+eit)log(2)=it+log(1+e2it)log2we[havelog(1+u)=11+u=n=0(1)nunlog(1+u)=n=0(1)nun+1n+1=n=1(1)n1unnlog(1+e2it)=n=1(1)n1e2intnφ(t)=log2+it+n=1(1)n1n(cos(2nt)+isin(2nt))=log2+n=1(1)n1ncos(2nt)+i(t+Σ()sint)φ(t)realφ(t)=log2+n=1(1)n1ncos(2nt)log(cosx+2sinx)=12log5+φ(xα)=12log5log2+n=1(1)n1ncos(2n(xα))=12log5log2+n=1(1)n1ncos(2nx2narctan(2))

Leave a Reply

Your email address will not be published. Required fields are marked *