Menu Close

let-g-x-x-1-x-2-x-1-1-find-g-n-x-2-calculate-g-n-0-3-developp-g-at-integr-serie-




Question Number 42688 by prof Abdo imad last updated on 31/Aug/18
let g(x) =((x−1)/(x^2 +x +1))  1)  find g^((n)) (x)  2)calculate g^((n)) (0)  3) developp g at  integr serie.
letg(x)=x1x2+x+11)findg(n)(x)2)calculateg(n)(0)3)developpgatintegrserie.
Commented by maxmathsup by imad last updated on 02/Sep/18
1) poles of g?      roots of x^2 +x+1  are j=e^(i((2π)/3))    and j^− =e^(−((i2π)/3))   g(x)=((x−1)/((x−j)(x−j^− ))) =(a/(x−j)) +(b/(x−j^− ))  a =lim_(x→j) (x−j)g(x) =((j−1)/(j−j^− )) =((j−1)/(2 i((√3)/2))) =((j−1)/(i(√3)))  b =lim_(x→j^− )  (x−j^− )g(x) =((j^− −1)/((j^− −j))) =((j^− −1)/(−i(√3))) =((1−j^− )/(i(√3))) ⇒  g(x) = ((j−1)/(i(√3)(x−j)))  −((j^− −1)/(i(√3)(x−j^− ))) ⇒  g^((n)) (x)=((j−1)/(i(√3)))  (((−1)^n n!)/((x−j)^(n+1) )) −((j^− −1)/(i(√3))) (((−1)^n n!)/((x−j^− )^(n+1) ))  =(((−1)^n n!)/(i(√3))){ ((j−1)/((x−j)^(n+1) )) −((j^− −1)/((x−j^− )^(n+1) ))}  =(((−1)^n n!)/(i(√3))){ (((j−1)(x−j^− )^(n+1)  −(j^− −1)(x−j)^(n+1) )/((x^2 +x+1)^(n+1) ))}
1)polesofg?rootsofx2+x+1arej=ei2π3andj=ei2π3g(x)=x1(xj)(xj)=axj+bxja=limxj(xj)g(x)=j1jj=j12i32=j1i3b=limxj(xj)g(x)=j1(jj)=j1i3=1ji3g(x)=j1i3(xj)j1i3(xj)g(n)(x)=j1i3(1)nn!(xj)n+1j1i3(1)nn!(xj)n+1=(1)nn!i3{j1(xj)n+1j1(xj)n+1}=(1)nn!i3{(j1)(xj)n+1(j1)(xj)n+1(x2+x+1)n+1}
Commented by maxmathsup by imad last updated on 02/Sep/18
2) g^((n)) (0) = (((−1)^n n!)/(i(√3))){ (j−1)(−j^− )^(n+1)  −(j^− −1)(−j)^(n+1) }  =−((n!)/(i(√3))){  (j−1)(j^− )^(n+1)  −(j^− −1)j^(n+1) } =((n!)/(i(√3))) 2iIm((j^− −1)(j)^(n+1) ) but  (j^− −1)j^(n+1)  =( e^(−((i2π)/3)) −1)e^(i((2(n+1)π)/3))   =(−(1/2) −i((√3)/2))(cos(((2(n+1)π)/3))+i sin(((2(n+1)π)/3)))  =−(1/2) cos(((2(n+1)π)/3))−(i/2) sin(((2(n+1)π)/3))−((i(√3))/2) cos(((2(n+1)π)/3))  +((√3)/2) cos(((2(n+1)π)/3))sin(((2(n+1)π)/3)) ⇒  g^((n)) (0) =((2n!)/( (√3))) {−(1/2) sin(((2(n+1)π)/3))−((√3)/2) cos(((2(n+1)π)/3))}  = −((n!)/( (√3))){  sin(((2(n+1)π)/3)) +(√3)cos(((2(n+1)π)/3)) .
2)g(n)(0)=(1)nn!i3{(j1)(j)n+1(j1)(j)n+1}=n!i3{(j1)(j)n+1(j1)jn+1}=n!i32iIm((j1)(j)n+1)but(j1)jn+1=(ei2π31)ei2(n+1)π3=(12i32)(cos(2(n+1)π3)+isin(2(n+1)π3))=12cos(2(n+1)π3)i2sin(2(n+1)π3)i32cos(2(n+1)π3)+32cos(2(n+1)π3)sin(2(n+1)π3)g(n)(0)=2n!3{12sin(2(n+1)π3)32cos(2(n+1)π3)}=n!3{sin(2(n+1)π3)+3cos(2(n+1)π3).
Commented by maxmathsup by imad last updated on 02/Sep/18
3) we have g(x) =Σ_(n=0) ^∞    ((g^((n)) (0))/(n!)) x^n   ⇒  g(x) =−(1/( (√3))) Σ_(n=0) ^∞    { sin(((2(n+1)π)/3)) +(√3)cos(((2(n+1)π)/3))}x^n  .
3)wehaveg(x)=n=0g(n)(0)n!xng(x)=13n=0{sin(2(n+1)π3)+3cos(2(n+1)π3)}xn.

Leave a Reply

Your email address will not be published. Required fields are marked *