Menu Close

let-g-z-z-e-z-1-developp-g-at-integr-serie-




Question Number 37353 by math khazana by abdo last updated on 12/Jun/18
let g(z) =(z/(e^z −1))  developp g at integr serie .
$${let}\:{g}\left({z}\right)\:=\frac{{z}}{{e}^{{z}} −\mathrm{1}} \\ $$$${developp}\:{g}\:{at}\:{integr}\:{serie}\:. \\ $$
Commented by prof Abdo imad last updated on 17/Jun/18
g(z)=((z e^(−z) )/(1−e^(−z) )) =Σ_(n=0) ^∞ z e^(−z)  e^(−nz)   =Σ_(n=0) ^∞   z e^(−(n+1)z)   =Σ_(n=0) ^∞  z (Σ_(p=0) ^∞   (((−1)^p (n+1)^p z^p )/(p!)))  =Σ_(n=0) ^∞   Σ_(p=0) ^∞  (((−1)^p (n+1)^p )/(p!)) z^(p+1)  =...
$${g}\left({z}\right)=\frac{{z}\:{e}^{−{z}} }{\mathrm{1}−{e}^{−{z}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} {z}\:{e}^{−{z}} \:{e}^{−{nz}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{z}\:{e}^{−\left({n}+\mathrm{1}\right){z}} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:{z}\:\left(\sum_{{p}=\mathrm{0}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{p}} \left({n}+\mathrm{1}\right)^{{p}} {z}^{{p}} }{{p}!}\right) \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\sum_{{p}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{p}} \left({n}+\mathrm{1}\right)^{{p}} }{{p}!}\:{z}^{{p}+\mathrm{1}} \:=… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *