Menu Close

let-give-0-lt-lt-1-1-prove-that-pi-coth-pi-1-n-1-2-2-n-2-2-by-integration-on-0-1-find-n-1-1-1-n-2-




Question Number 29975 by abdo imad last updated on 14/Feb/18
 let give 0<α<1  1) prove that  π coth(πα) −(1/α) =  Σ_(n=1) ^∞     ((2α)/(α^2  +n^2 )).  2)by integration on[0,1] find Π_(n=1) ^∞  (1+(1/n^2 )).
letgive0<α<11)provethatπcoth(πα)1α=n=12αα2+n2.2)byintegrationon[0,1]findn=1(1+1n2).
Commented by abdo imad last updated on 16/Feb/18
1)let developp the 2π periodic function f(x)=ch(αx)  f(x)=(a_0 /2) +Σ_(n=1) ^∞  a_n  cos(nx)  a_n =(2/T) ∫_([T])  f(x)cos(nx)dx= (2/(2π)) ∫_(−π) ^π  ch(αx)cos(nx)dx  =(2/π) ∫_0 ^π  ch(αx)cos(nx)dx⇒(π/2)a_n = ∫_0 ^π  ((e^(αx)  +e^(−αx) )/2)cos(nx)dx  π a_n = ∫_0 ^π  e^(αx)  cos(nx)dx +∫_0 ^π  e^(−αx) cos(nx)dx =I(α) +I(−α)  I(α) =Re( ∫_0 ^π   e^(αx+inx) dx)=Re( ∫_0 ^π   e^((α+in)x) dx)but  ∫_0 ^π   e^((α+in)x) dx =[(1/(α+in)) e^((α+in)x) ]_0 ^π   =(1/(α+in))( e^(απ) (−1)^n  −1)  =((α−in)/(α^2 +n^2 ))( (−1)^n  e^(απ) −1) ⇒ I(α)= ((α( (−1)^n e^(απ) −1))/(α^2 +n^2 ))  I(−α)= ((−α((−1)^n e^(−απ)  −1))/(α^2 +n^2 ))  πa_n =((α(−1)^n (e^(απ) − e^(−απ) ))/(α^2 +n^2 ))=((2α(−1)^n sh(απ))/(α^2  +n^2 ))⇒  a_n =(2/π) α sh(απ) (((−1)^n )/(α^2  +n^2 )) and  a_0 =(2/π) ((sh(απ))/α) ⇒  ch(αx)= ((sh(απ))/(πα))  + ((2αsh(απ))/π) Σ_(n=1) ^∞  (((−1)^n )/(α^2  +n^2 ))cos(nx)   x=π ⇒ch(πα)=((sh(απ))/(πα)) +((2αsh(απ))/π)Σ_(n=1) ^∞   (1/(α^2 +n^2 )) ⇒  coth(πα)=(1/(πα)) +((2α)/π)Σ_(n=1) ^∞   (1/(α^2  +n^2 )) ⇒  π coth(πα)−(1/α) = Σ_(n=1) ^(∞ )   ((2α)/(α^2  +n^2 )).
1)letdeveloppthe2πperiodicfunctionf(x)=ch(αx)f(x)=a02+n=1ancos(nx)an=2T[T]f(x)cos(nx)dx=22πππch(αx)cos(nx)dx=2π0πch(αx)cos(nx)dxπ2an=0πeαx+eαx2cos(nx)dxπan=0πeαxcos(nx)dx+0πeαxcos(nx)dx=I(α)+I(α)I(α)=Re(0πeαx+inxdx)=Re(0πe(α+in)xdx)but0πe(α+in)xdx=[1α+ine(α+in)x]0π=1α+in(eαπ(1)n1)=αinα2+n2((1)neαπ1)I(α)=α((1)neαπ1)α2+n2I(α)=α((1)neαπ1)α2+n2πan=α(1)n(eαπeαπ)α2+n2=2α(1)nsh(απ)α2+n2an=2παsh(απ)(1)nα2+n2anda0=2πsh(απ)αch(αx)=sh(απ)πα+2αsh(απ)πn=1(1)nα2+n2cos(nx)x=πch(πα)=sh(απ)πα+2αsh(απ)πn=11α2+n2coth(πα)=1πα+2απn=11α2+n2πcoth(πα)1α=n=12αα2+n2.
Commented by abdo imad last updated on 16/Feb/18
we have ∫_0 ^1 (πcoth(πα)−(1/α))dα =Σ_(n=1) ^∞ ∫_0 ^1  ((2α)/(α^2  +n^2 ))dα  =Σ_(n=1) ^∞ [ ln(α^2  +n^2 )]_0 ^1  =Σ_(n=1) ^∞ ln(1+n^2 )−ln(n^2 )=Σ_(n=1) ^∞ ln(1+(1/n^2 ))  =ln(Π_(n=1) ^∞  (1 +(1/n^2 ))) ⇒  Π_(n=1) ^∞  (1+(1/n^2 ))= e^(∫_0 ^1  (πcoth(πα) −(1/α))dα)   but  ch.απ=t give  ∫_0 ^1 ((απcoth(απ) −1)/α)dα= ∫_0 ^π  ((t cotht −1)/(t/π)) (dt/π)  = ∫_0 ^π   ((tcoth(t)−1)/t)dt= ∫_0 ^π ( ((e^t −e^(−t) )/(e^t +e^(−t) )) −(1/t))dt....be continued...  π
wehave01(πcoth(πα)1α)dα=n=1012αα2+n2dα=n=1[ln(α2+n2)]01=n=1ln(1+n2)ln(n2)=n=1ln(1+1n2)=ln(n=1(1+1n2))n=1(1+1n2)=e01(πcoth(πα)1α)dαbutch.απ=tgive01απcoth(απ)1αdα=0πtcotht1tπdtπ=0πtcoth(t)1tdt=0π(etetet+et1t)dt.becontinuedπ

Leave a Reply

Your email address will not be published. Required fields are marked *