let-give-0-lt-lt-1-1-prove-that-pi-coth-pi-1-n-1-2-2-n-2-2-by-integration-on-0-1-find-n-1-1-1-n-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 29975 by abdo imad last updated on 14/Feb/18 letgive0<α<11)provethatπcoth(πα)−1α=∑n=1∞2αα2+n2.2)byintegrationon[0,1]find∏n=1∞(1+1n2). Commented by abdo imad last updated on 16/Feb/18 1)letdeveloppthe2πperiodicfunctionf(x)=ch(αx)f(x)=a02+∑n=1∞ancos(nx)an=2T∫[T]f(x)cos(nx)dx=22π∫−ππch(αx)cos(nx)dx=2π∫0πch(αx)cos(nx)dx⇒π2an=∫0πeαx+e−αx2cos(nx)dxπan=∫0πeαxcos(nx)dx+∫0πe−αxcos(nx)dx=I(α)+I(−α)I(α)=Re(∫0πeαx+inxdx)=Re(∫0πe(α+in)xdx)but∫0πe(α+in)xdx=[1α+ine(α+in)x]0π=1α+in(eαπ(−1)n−1)=α−inα2+n2((−1)neαπ−1)⇒I(α)=α((−1)neαπ−1)α2+n2I(−α)=−α((−1)ne−απ−1)α2+n2πan=α(−1)n(eαπ−e−απ)α2+n2=2α(−1)nsh(απ)α2+n2⇒an=2παsh(απ)(−1)nα2+n2anda0=2πsh(απ)α⇒ch(αx)=sh(απ)πα+2αsh(απ)π∑n=1∞(−1)nα2+n2cos(nx)x=π⇒ch(πα)=sh(απ)πα+2αsh(απ)π∑n=1∞1α2+n2⇒coth(πα)=1πα+2απ∑n=1∞1α2+n2⇒πcoth(πα)−1α=∑n=1∞2αα2+n2. Commented by abdo imad last updated on 16/Feb/18 wehave∫01(πcoth(πα)−1α)dα=∑n=1∞∫012αα2+n2dα=∑n=1∞[ln(α2+n2)]01=∑n=1∞ln(1+n2)−ln(n2)=∑n=1∞ln(1+1n2)=ln(∏n=1∞(1+1n2))⇒∏n=1∞(1+1n2)=e∫01(πcoth(πα)−1α)dαbutch.απ=tgive∫01απcoth(απ)−1αdα=∫0πtcotht−1tπdtπ=∫0πtcoth(t)−1tdt=∫0π(et−e−tet+e−t−1t)dt….becontinued…π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 5-Next Next post: let-give-x-gt-0-1-prove-that-0-1-dt-1-t-x-n-0-1-n-nx-1-2-find-n-0-1-n-n-1-and-n-0-1-n-2n-1-3-find-n-1-1-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.