Menu Close

let-give-0-pi-prove-that-0-1-dt-e-i-t-n-1-e-in-n-




Question Number 28611 by abdo imad last updated on 27/Jan/18
let give θ∈]0,π[  prove that  ∫_0 ^1    (dt/(e^(−iθ) −t))= Σ_(n=1) ^(+∞)   (e^(inθ) /n)  .
letgiveθ]0,π[provethat01dteiθt=n=1+einθn.
Commented by abdo imad last updated on 28/Jan/18
let put  I= ∫_0 ^1   (dt/(e^(−iθ) −t)) ⇒ I= ∫_0 ^1   (e^(iθ) /(1−e^(iθ) t)) but we have  ∣e^(iθ) t∣≤1 I= ∫_0 ^1  e^(iθ)  ( Σ_(n=0) ^(+∞)  e^(inθ)  t^n )dt  = Σ_(n=0) ^(+∞)  e^(i(n+1)θ)  ∫_0 ^1  t^n dt  = Σ_(n=0) ^(+∞)   (e^(i(n+1)θ) /(n+1))= Σ_(n=1) ^(+∞)     (e^(inθ) /n) .
letputI=01dteiθtI=01eiθ1eiθtbutwehaveeiθt∣⩽1I=01eiθ(n=0+einθtn)dt=n=0+ei(n+1)θ01tndt=n=0+ei(n+1)θn+1=n=1+einθn.

Leave a Reply

Your email address will not be published. Required fields are marked *