Menu Close

let-give-0-x-1-calculate-0-arctan-x-t-1-t-2-dt-




Question Number 32737 by caravan msup abdo. last updated on 01/Apr/18
let give 0≤x≤1  calculate  ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt
letgive0x1calculate0arctan(xt)1+t2dt
Answered by hknkrc46 last updated on 09/Apr/18
t=xcotu⇒dt=−xcsc^2 udu ∧ (t→0⇒u→(π/2) ∧ t→∞⇒u→0)  ∫_(π/2) ^0 ((−uxcsc^2 u)/(1+x^2 cot^2 u))du=∫_(π/2) ^0 ((−ux)/(sin^2 u+x^2 cos^2 u))du=∫_(π/2) ^0 ((−ux)/((1−cos2u+x^2 (1+cos2u))/2))du  ∫_(π/2) ^0 ((−2ux)/((x^2 −1)cos2u+x^2 +1))du=((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(cos2u+((x^2 +1)/(x^2 −1))))du  =((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(2cos^2 u+(2/(x^2 −1))))du=((−x)/(x^2 −1))∫_(π/2) ^0 (u/((1/(x^2 −1))+cos^2 u))du  I DO NOT KNOW  :(
t=xcotudt=xcsc2udu(t0uπ2tu0)π20uxcsc2u1+x2cot2udu=π20uxsin2u+x2cos2udu=π20ux1cos2u+x2(1+cos2u)2duπ202ux(x21)cos2u+x2+1du=2xx21π20ucos2u+x2+1x21du=2xx21π20u2cos2u+2x21du=xx21π20u1x21+cos2uduIDONOTKNOW:(

Leave a Reply

Your email address will not be published. Required fields are marked *