Menu Close

let-give-0-x-1-calculate-0-arctan-x-t-1-t-2-dt-




Question Number 32737 by caravan msup abdo. last updated on 01/Apr/18
let give 0≤x≤1  calculate  ∫_0 ^∞ ((arctan((x/t)))/(1+t^2 )) dt
$${let}\:{give}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{calculate}\:\:\int_{\mathrm{0}} ^{\infty} \frac{{arctan}\left(\frac{{x}}{{t}}\right)}{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$
Answered by hknkrc46 last updated on 09/Apr/18
t=xcotu⇒dt=−xcsc^2 udu ∧ (t→0⇒u→(π/2) ∧ t→∞⇒u→0)  ∫_(π/2) ^0 ((−uxcsc^2 u)/(1+x^2 cot^2 u))du=∫_(π/2) ^0 ((−ux)/(sin^2 u+x^2 cos^2 u))du=∫_(π/2) ^0 ((−ux)/((1−cos2u+x^2 (1+cos2u))/2))du  ∫_(π/2) ^0 ((−2ux)/((x^2 −1)cos2u+x^2 +1))du=((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(cos2u+((x^2 +1)/(x^2 −1))))du  =((−2x)/(x^2 −1))∫_(π/2) ^0 (u/(2cos^2 u+(2/(x^2 −1))))du=((−x)/(x^2 −1))∫_(π/2) ^0 (u/((1/(x^2 −1))+cos^2 u))du  I DO NOT KNOW  :(
$${t}={xcotu}\Rightarrow{dt}=−{xcsc}^{\mathrm{2}} {udu}\:\wedge\:\left({t}\rightarrow\mathrm{0}\Rightarrow{u}\rightarrow\frac{\pi}{\mathrm{2}}\:\wedge\:{t}\rightarrow\infty\Rightarrow{u}\rightarrow\mathrm{0}\right) \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{−{uxcsc}^{\mathrm{2}} {u}}{\mathrm{1}+{x}^{\mathrm{2}} {cot}^{\mathrm{2}} {u}}{du}=\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{−{ux}}{{sin}^{\mathrm{2}} {u}+{x}^{\mathrm{2}} {cos}^{\mathrm{2}} {u}}{du}=\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{−{ux}}{\frac{\mathrm{1}−{cos}\mathrm{2}{u}+{x}^{\mathrm{2}} \left(\mathrm{1}+{cos}\mathrm{2}{u}\right)}{\mathrm{2}}}{du} \\ $$$$\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{−\mathrm{2}{ux}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right){cos}\mathrm{2}{u}+{x}^{\mathrm{2}} +\mathrm{1}}{du}=\frac{−\mathrm{2}{x}}{{x}^{\mathrm{2}} −\mathrm{1}}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{{u}}{{cos}\mathrm{2}{u}+\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}}{du} \\ $$$$=\frac{−\mathrm{2}{x}}{{x}^{\mathrm{2}} −\mathrm{1}}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{{u}}{\mathrm{2}{cos}^{\mathrm{2}} {u}+\frac{\mathrm{2}}{{x}^{\mathrm{2}} −\mathrm{1}}}{du}=\frac{−{x}}{{x}^{\mathrm{2}} −\mathrm{1}}\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \frac{{u}}{\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{1}}+{cos}^{\mathrm{2}} {u}}{du} \\ $$$${I}\:{DO}\:{NOT}\:{KNOW}\:\::\left(\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *