Menu Close

let-give-A-0-y-x-1-dxdxy-1-x-2-1-y-2-and-B-0-pi-4-ln-2cos-2-2cos-2-d-calculate-A-and-prove-that-B-A-




Question Number 27691 by abdo imad last updated on 12/Jan/18
let give  A=∫∫_(0≤y≤x≤1)       ((dxdxy)/((1+x^2 )(1+y^2 )))  and  B= ∫_0 ^(π/4)  ((ln(2cos^2 θ))/(2cos(2θ)))dθ  calculate A and prove that B=A.
letgiveA=0yx1dxdxy(1+x2)(1+y2)andB=0π4ln(2cos2θ)2cos(2θ)dθcalculateAandprovethatB=A.
Commented by abdo imad last updated on 19/Jan/18
A= ∫_0 ^1  (∫_0 ^x    (dy/(1+y^2 ))) (dx/(1+x^2 )) = ∫_0 ^1    ((arctanx)/(1+x^2 ))dx  by parts  A= [actanx.arctanx]_0 ^1  − ∫_0 ^1  arctanx (dx/(1+x^2 ))  2A=(π^2 /(16))  ⇒ A=  (π^2 /(32))  B= ∫_0 ^(π/4)   ((ln(2((1+cos(2θ))/2)))/(2cos(2θ)))dθ= ∫_0 ^(π/4)    ((ln(1+cos(2θ)))/(2cos(2θ)))dθ  = ∫_0 ^(π/2)     ((ln(1+cost))/(2cost)) (dt/2) = (1/4) ∫_0 ^(π/2)    ((ln(1+cost))/(cost))dt let introduce  F(x)= ∫_0 ^(π/2)    ((ln(1+xcost))/(cost))dt  with  −1<x<1  F^′ (x)=  ∫_0 ^(π/2)       (dt/(1+xcost))  the ch. tan((t/2))=u give  F^ (x)=  ∫_0 ^(1      )  (1/(1+x((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))= ∫_0 ^1     ((2du)/(1+u^2  +x −xu^2 ))  = ∫_0 ^1        ((2du)/((1−x)u^2 +1+x)) = (2/(1−x)) ∫_0 ^1    (du/(u^2  +((1+x)/(1−x)))) the ch.  u=(√((1+x)/(1−x)))t give  F^ (x)=  (2/(1−x)) ∫_0 ^((√(1−x))/( (√(1+x  ))))    (1/(((1+x)/(1−x))(1+u^2 ))) ((√(1+x))/( (√(1−x))))dt  = (2/(1−x)) ((1−x)/(1+x)) ((√(1+x))/( (√(1−x)))) ∫_0 ^((√(1−x))/( (√(1+x))))     (dt/(1+t^2 ))  = (2/( (√(1−x^2 )))) arctan((√((1−x)/(1+x)))) but with  x=cosθ  arctan((√((1−x)/(1+x))))=arctan(tan((θ/2)))= (θ/2)  F^ (x)=(2/( (√(1−x^2 )))) ((arcosx)/2)= ((arcosx)/( (√(1−x^2 ))))  F(x)= ∫_0 ^x     ((arcost)/( (√(1−t^2 ))))dt +λ    ( λ=F(0)=0)  ⇒    F(x)=  ∫_0 ^x   ((arcost)/( (√(1−t^2 ))))dt  B= (1/4) F(1)= (1/4) ∫_0 ^(1  )    ((arcost)/( (√(1−t^2 ))))dt by parts  let put I= ∫_0 ^1   ((arcost)/( (√(1−t^2 )))) dt    by parts  I=  −arcost.arcost]_0 ^1  − ∫_0 ^1 (−arcost) ((−dt)/( (√(1−t^2 ))))  2I= (π^2 /4)  ⇒ I=  (π^2 /8)   ⇒ F(1)= (π^2 /8)  and B= (π^2 /(32))  =A.  for  F(x)= ∫_0 ^x    ((arcost)/( (√(1−t^2 ))))dt   let integrate by parts  F(x)= −arcot arcost]_0 ^x   − ∫_0 ^x  (−arcosx) ((−dt)/( (√(1−x^2 ))))  = (π^2 /4) −(arcosx)^2  −F(x)  ⇒ F(x)= (π^2 /8) −(1/2) (arcosx)^2   so  ∫_0 ^(π/2) ((ln(1+xcost))/(cost))dt = (π^2 /8) − (1/2) (arcosx)^2  .
A=01(0xdy1+y2)dx1+x2=01arctanx1+x2dxbypartsA=[actanx.arctanx]0101arctanxdx1+x22A=π216A=π232B=0π4ln(21+cos(2θ)2)2cos(2θ)dθ=0π4ln(1+cos(2θ))2cos(2θ)dθ=0π2ln(1+cost)2costdt2=140π2ln(1+cost)costdtletintroduceF(x)=0π2ln(1+xcost)costdtwith1<x<1F(x)=0π2dt1+xcostthech.tan(t2)=ugiveF(x)=0111+x1u21+u22du1+u2=012du1+u2+xxu2=012du(1x)u2+1+x=21x01duu2+1+x1xthech.u=1+x1xtgiveF(x)=21x01x1+x11+x1x(1+u2)1+x1xdt=21x1x1+x1+x1x01x1+xdt1+t2=21x2arctan(1x1+x)butwithx=cosθarctan(1x1+x)=arctan(tan(θ2))=θ2F(x)=21x2arcosx2=arcosx1x2F(x)=0xarcost1t2dt+λ(λ=F(0)=0)F(x)=0xarcost1t2dtB=14F(1)=1401arcost1t2dtbypartsletputI=01arcost1t2dtbypartsI=arcost.arcost]0101(arcost)dt1t22I=π24I=π28F(1)=π28andB=π232=A.forF(x)=0xarcost1t2dtletintegratebypartsF(x)=arcotarcost]0x0x(arcosx)dt1x2=π24(arcosx)2F(x)F(x)=π2812(arcosx)2so0π2ln(1+xcost)costdt=π2812(arcosx)2.

Leave a Reply

Your email address will not be published. Required fields are marked *