Question Number 27343 by abdo imad last updated on 05/Jan/18
$${let}\:{give}\:{A}=\left(_{\mathrm{2}\:\:\:\:\:\:\:\mathrm{2}} ^{\mathrm{1}\:\:\:\:\:\:\mathrm{2}} \right)\:\:\:{find}\:\:{A}^{{n}} \:\:\:{and}\:\:{e}^{{A}} \\ $$$${and}\:\:{e}^{{tA}} \:\:\:\:\:\:.\:{we}\:{remind}\:{that}\:\:{e}^{{A}} =\:\sum_{} \:\frac{{A}^{{n}} }{{n}!} \\ $$
Commented by Rasheed.Sindhi last updated on 05/Jan/18
$$\mathrm{What}'\mathrm{s}\:{n}\:\mathrm{in}\:{e}^{{A}} =\:\sum_{} \:\frac{{A}^{{n}} }{{n}!}\:\:? \\ $$
Commented by abdo imad last updated on 05/Jan/18
$${n}\:{integer}. \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jan/18
$$\mathrm{My}\:\mathrm{question}\:\mathrm{is}\:\mathrm{actually}\:\mathrm{this}\:\mathrm{that} \\ $$$$\mathrm{why}\:\mathrm{n}\:\mathrm{is}\:\mathrm{involved}\:\mathrm{in}\:\mathrm{e}^{\mathrm{A}} ? \\ $$
Commented by Rasheed.Sindhi last updated on 07/Jan/18
$${thanks}\:{sir}.\:{I}\:{misunderstood}. \\ $$
Commented by prakash jain last updated on 06/Jan/18
$${e}^{{x}} =\underset{{i}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{i}} }{{i}!} \\ $$
Commented by Rasheed.Sindhi last updated on 06/Jan/18
$$\:\mathrm{Is}\:\:{e}^{{A}} =\:\sum_{} \:\frac{{A}^{{n}} }{{n}!}\:\mathrm{correct}? \\ $$
Commented by abdo imad last updated on 06/Jan/18
$${e}^{{A}} \:{is}\:{also}\:{a}\:{matrise}\:{defined}\:{by}\: \\ $$$${e}^{{A}} =\:\sum_{{n}\geqslant\mathrm{0}} \:\:\frac{{A}^{{n}} }{{n}!}\:\:{like}\:\:{e}^{{x}} =\:\Sigma\:\frac{{x}^{{n}} }{{n}!}\: \\ $$
Answered by prakash jain last updated on 07/Jan/18
$${A}^{{n}} =\begin{pmatrix}{{a}_{{n}−\mathrm{1}} }&{{b}_{{n}−\mathrm{1}} }\\{{c}_{{n}−\mathrm{1}} }&{{d}_{{n}−\mathrm{1}} }\end{pmatrix}\:\centerdot\begin{pmatrix}{\mathrm{1}}&{\mathrm{2}}\\{\mathrm{2}}&{\mathrm{2}}\end{pmatrix} \\ $$$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{b}_{{n}−\mathrm{1}} \\ $$$${b}_{{n}} =\mathrm{2}{a}_{{n}−\mathrm{1}} +\mathrm{2}{b}_{{n}−\mathrm{1}} \\ $$$${c}_{{n}} =\mathrm{2}{c}_{{n}−\mathrm{1}} +\mathrm{2}{d}_{{n}−\mathrm{1}} \\ $$$${c}_{{n}} =\mathrm{2}{c}_{{n}−\mathrm{1}} +\mathrm{2}{d}_{{n}−\mathrm{1}} \\ $$$${b}_{{n}−\mathrm{1}} =\frac{{a}_{{n}} −{a}_{{n}−\mathrm{1}} }{\mathrm{2}} \\ $$$${b}_{{n}} =\mathrm{2}{a}_{{n}−\mathrm{1}} +\mathrm{2}{b}_{{n}−\mathrm{1}} ={a}_{{n}} +{a}_{{n}−\mathrm{1}} \\ $$$${a}_{{n}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{b}_{{n}−\mathrm{1}} ={a}_{{n}−\mathrm{1}} +\mathrm{2}{a}_{{n}−\mathrm{1}} +\mathrm{2}{a}_{{n}−\mathrm{2}} \\ $$$${a}_{{n}} −\mathrm{3}{a}_{{n}−\mathrm{1}} −\mathrm{2}{a}_{{n}−\mathrm{2}} =\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{2}=\mathrm{0}\Rightarrow{x}=\frac{\mathrm{3}\pm\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$${a}_{{n}} ={c}_{\mathrm{1}} \left(\frac{\mathrm{3}+\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} +{c}_{\mathrm{2}} \left(\frac{\mathrm{3}−\sqrt{\mathrm{17}}}{\mathrm{2}}\right)^{{n}} \\ $$$${a}_{\mathrm{1}} =\mathrm{1}\Rightarrow{c}_{\mathrm{1}} \left(\mathrm{3}+\sqrt{\mathrm{17}}\right)+{c}_{\mathrm{2}} \left(\mathrm{3}−\sqrt{\mathrm{17}}\right)=\mathrm{1} \\ $$$${a}_{\mathrm{2}} =\mathrm{5}\Rightarrow{c}_{\mathrm{1}} \left(\mathrm{3}+\sqrt{\mathrm{17}}\right)^{\mathrm{2}} +{c}_{\mathrm{2}} \left(\mathrm{3}−\sqrt{\mathrm{17}}\right)^{\mathrm{2}} =\mathrm{20} \\ $$$${c}_{\mathrm{1}} =\frac{\mathrm{20}−\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)}{\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)^{\mathrm{2}} −\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)} \\ $$$$=\frac{\mathrm{17}+\sqrt{\mathrm{17}}}{\mathrm{9}+\mathrm{17}+\mathrm{6}\sqrt{\mathrm{17}}−\mathrm{9}+\mathrm{17}}=\frac{\mathrm{17}+\sqrt{\mathrm{17}}}{\mathrm{34}+\mathrm{6}\sqrt{\mathrm{17}}} \\ $$$$=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{2}\left(\sqrt{\mathrm{17}}+\mathrm{3}\right)} \\ $$$${c}_{\mathrm{2}} =\frac{\mathrm{20}−\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)}{\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)^{\mathrm{2}} −\left(\mathrm{3}+\sqrt{\mathrm{17}}\right)\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)}=\frac{\mathrm{17}−\sqrt{\mathrm{17}}}{\mathrm{34}−\mathrm{6}\sqrt{\mathrm{17}}} \\ $$$${c}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{17}}}{\mathrm{2}\left(\mathrm{3}−\sqrt{\mathrm{17}}\right)} \\ $$$$\mathrm{Similarly}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:{b}_{{n}} ,{c}_{{n}} \:\mathrm{and}\:{d}_{{n}} . \\ $$