Menu Close

let-give-A-2-2-1-2-find-A-n-and-e-A-and-e-tA-we-remind-that-e-A-A-n-n-




Question Number 27343 by abdo imad last updated on 05/Jan/18
let give A=(_(2       2) ^(1      2) )   find  A^n    and  e^A   and  e^(tA)       . we remind that  e^A = Σ_  (A^n /(n!))
letgiveA=(2212)findAnandeAandetA.weremindthateA=Ann!
Commented by Rasheed.Sindhi last updated on 05/Jan/18
What′s n in e^A = Σ_  (A^n /(n!))  ?
WhatsnineA=Ann!?
Commented by abdo imad last updated on 05/Jan/18
n integer.
ninteger.
Commented by Rasheed.Sindhi last updated on 06/Jan/18
My question is actually this that  why n is involved in e^A ?
MyquestionisactuallythisthatwhynisinvolvedineA?
Commented by Rasheed.Sindhi last updated on 07/Jan/18
thanks sir. I misunderstood.
thankssir.Imisunderstood.
Commented by prakash jain last updated on 06/Jan/18
e^x =Σ_(i=0) ^∞ (x^i /(i!))
ex=i=0xii!
Commented by Rasheed.Sindhi last updated on 06/Jan/18
 Is  e^A = Σ_  (A^n /(n!)) correct?
IseA=Ann!correct?
Commented by abdo imad last updated on 06/Jan/18
e^A  is also a matrise defined by   e^A = Σ_(n≥0)   (A^n /(n!))  like  e^x = Σ (x^n /(n!))
eAisalsoamatrisedefinedbyeA=n0Ann!likeex=Σxnn!
Answered by prakash jain last updated on 07/Jan/18
A^n = ((a_(n−1) ,b_(n−1) ),(c_(n−1) ,d_(n−1) ) ) ∙ ((1,2),(2,2) )  a_n =a_(n−1) +2b_(n−1)   b_n =2a_(n−1) +2b_(n−1)   c_n =2c_(n−1) +2d_(n−1)   c_n =2c_(n−1) +2d_(n−1)   b_(n−1) =((a_n −a_(n−1) )/2)  b_n =2a_(n−1) +2b_(n−1) =a_n +a_(n−1)   a_n =a_(n−1) +2b_(n−1) =a_(n−1) +2a_(n−1) +2a_(n−2)   a_n −3a_(n−1) −2a_(n−2) =0  x^2 −3x−2=0⇒x=((3±(√(17)))/2)  a_n =c_1 (((3+(√(17)))/2))^n +c_2 (((3−(√(17)))/2))^n   a_1 =1⇒c_1 (3+(√(17)))+c_2 (3−(√(17)))=1  a_2 =5⇒c_1 (3+(√(17)))^2 +c_2 (3−(√(17)))^2 =20  c_1 =((20−(3−(√(17))))/((3+(√(17)))^2 −(3+(√(17)))(3−(√(17)))))  =((17+(√(17)))/(9+17+6(√(17))−9+17))=((17+(√(17)))/(34+6(√(17))))  =((1+(√(17)))/(2((√(17))+3)))  c_2 =((20−(3+(√(17))))/((3−(√(17)))^2 −(3+(√(17)))(3−(√(17)))))=((17−(√(17)))/(34−6(√(17))))  c_2 =((1−(√(17)))/(2(3−(√(17)))))  Similarly we can find b_n ,c_n  and d_n .
An=(an1bn1cn1dn1)(1222)an=an1+2bn1bn=2an1+2bn1cn=2cn1+2dn1cn=2cn1+2dn1bn1=anan12bn=2an1+2bn1=an+an1an=an1+2bn1=an1+2an1+2an2an3an12an2=0x23x2=0x=3±172an=c1(3+172)n+c2(3172)na1=1c1(3+17)+c2(317)=1a2=5c1(3+17)2+c2(317)2=20c1=20(317)(3+17)2(3+17)(317)=17+179+17+6179+17=17+1734+617=1+172(17+3)c2=20(3+17)(317)2(3+17)(317)=171734617c2=1172(317)Similarlywecanfindbn,cnanddn.

Leave a Reply

Your email address will not be published. Required fields are marked *