Menu Close

let-give-A-cos-sin-sin-cos-1-calculate-t-A-A-prove-that-A-is-inversible-and-find-A-1-2-find-A-n-for-n-N-3-developp




Question Number 28259 by abdo imad last updated on 22/Jan/18
let give    A=   (  cosθ       −sinθ  )                                 ( sinθ         cosθ    )  1)  calculate^t A. A  .prove that A is inversible and find  A^(−1)   2)  find  A^n    for n∈ N  3) developp (A +A^(−1) )^n   then prove that  2^n  cos^n θ  =  Σ_(k=0) ^n  C_n ^k (n−2k)θ  and  Σ_(k=0) ^n  C_n ^n  sin(n−2k)θ  =0  .
$${let}\:{give}\:\:\:\:{A}=\:\:\:\left(\:\:{cos}\theta\:\:\:\:\:\:\:−{sin}\theta\:\:\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\:{sin}\theta\:\:\:\:\:\:\:\:\:{cos}\theta\:\:\:\:\right) \\ $$$$\left.\mathrm{1}\right)\:\:{calculate}\:^{{t}} {A}.\:{A}\:\:.{prove}\:{that}\:{A}\:{is}\:{inversible}\:{and}\:{find} \\ $$$${A}^{−\mathrm{1}} \\ $$$$\left.\mathrm{2}\right)\:\:{find}\:\:{A}^{{n}} \:\:\:{for}\:{n}\in\:{N} \\ $$$$\left.\mathrm{3}\right)\:{developp}\:\left({A}\:+{A}^{−\mathrm{1}} \right)^{{n}} \:\:{then}\:{prove}\:{that} \\ $$$$\mathrm{2}^{{n}} \:{cos}^{{n}} \theta\:\:=\:\:\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \left({n}−\mathrm{2}{k}\right)\theta\:\:{and} \\ $$$$\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{n}} \:{sin}\left({n}−\mathrm{2}{k}\right)\theta\:\:=\mathrm{0}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *