Menu Close

let-give-a-gt-0-find-0-e-x-x-a-dx-




Question Number 32361 by prof Abdo imad last updated on 23/Mar/18
let give a>0 find  ∫_0 ^∞    (e^(−x) /( (√(x+a)))) dx.
letgivea>0find0exx+adx.
Commented by abdo imad last updated on 25/Mar/18
the ch.(√(x+a)) =t  give x+a =t^2  ⇒ x=t^2 −a  ∫_0 ^∞   (e^(−x) /( (√(x+a)))) dx = ∫_(√a) ^(+∞)    (e^(−(t^2 −a)) /t) 2t dt  =2 e^a   ∫_(√a) ^(+∞)  e^(−t^2 )  dt =2 e^a ( ∫_0 ^∞  e^(−t^2 )  −∫_0 ^(√a)  e^(−t^2 ) dt)  =2 e^a  ((√π)/2)  −2 e^a   ∫_0 ^(√a)   e^(−t^2 ) dt  =e^a (√π)  −2 e^a  ∫_0 ^(√a)   e^(−t^2 )  dt  .
thech.x+a=tgivex+a=t2x=t2a0exx+adx=a+e(t2a)t2tdt=2eaa+et2dt=2ea(0et20aet2dt)=2eaπ22ea0aet2dt=eaπ2ea0aet2dt.

Leave a Reply

Your email address will not be published. Required fields are marked *