Menu Close

let-give-a-gt-0-find-0-e-x-x-a-dx-




Question Number 32361 by prof Abdo imad last updated on 23/Mar/18
let give a>0 find  ∫_0 ^∞    (e^(−x) /( (√(x+a)))) dx.
$${let}\:{give}\:{a}>\mathrm{0}\:{find}\:\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{−{x}} }{\:\sqrt{{x}+{a}}}\:{dx}. \\ $$
Commented by abdo imad last updated on 25/Mar/18
the ch.(√(x+a)) =t  give x+a =t^2  ⇒ x=t^2 −a  ∫_0 ^∞   (e^(−x) /( (√(x+a)))) dx = ∫_(√a) ^(+∞)    (e^(−(t^2 −a)) /t) 2t dt  =2 e^a   ∫_(√a) ^(+∞)  e^(−t^2 )  dt =2 e^a ( ∫_0 ^∞  e^(−t^2 )  −∫_0 ^(√a)  e^(−t^2 ) dt)  =2 e^a  ((√π)/2)  −2 e^a   ∫_0 ^(√a)   e^(−t^2 ) dt  =e^a (√π)  −2 e^a  ∫_0 ^(√a)   e^(−t^2 )  dt  .
$${the}\:{ch}.\sqrt{{x}+{a}}\:={t}\:\:{give}\:{x}+{a}\:={t}^{\mathrm{2}} \:\Rightarrow\:{x}={t}^{\mathrm{2}} −{a} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{x}} }{\:\sqrt{{x}+{a}}}\:{dx}\:=\:\int_{\sqrt{{a}}} ^{+\infty} \:\:\:\frac{{e}^{−\left({t}^{\mathrm{2}} −{a}\right)} }{{t}}\:\mathrm{2}{t}\:{dt} \\ $$$$=\mathrm{2}\:{e}^{{a}} \:\:\int_{\sqrt{{a}}} ^{+\infty} \:{e}^{−{t}^{\mathrm{2}} } \:{dt}\:=\mathrm{2}\:{e}^{{a}} \left(\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{t}^{\mathrm{2}} } \:−\int_{\mathrm{0}} ^{\sqrt{{a}}} \:{e}^{−{t}^{\mathrm{2}} } {dt}\right) \\ $$$$=\mathrm{2}\:{e}^{{a}} \:\frac{\sqrt{\pi}}{\mathrm{2}}\:\:−\mathrm{2}\:{e}^{{a}} \:\:\int_{\mathrm{0}} ^{\sqrt{{a}}} \:\:{e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$={e}^{{a}} \sqrt{\pi}\:\:−\mathrm{2}\:{e}^{{a}} \:\int_{\mathrm{0}} ^{\sqrt{{a}}} \:\:{e}^{−{t}^{\mathrm{2}} } \:{dt}\:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *